C0. Introduction

C0.1

(C0.1) Give a general description and introduction to your organization.

Ball Corporation (herein referred to as “Ball”, “we”, “us” or “our”) supplies innovative, sustainable packaging solutions for beverage, personal care and household products customers, as well as aerospace and other technologies and services primarily for the U.S. government. Ball’s 2021 financial results, including net sales of $13.8 billion, were fuelled by the diligent focus of our 24,300 employees on Drive for 10 – our common vision to achieve continued success for Ball and all of our stakeholders over the long term. For more information, visit www.ball.com, or connect with us on Facebook or Twitter.

To ensure information and comparisons are reliable and meaningful over time, and to allow stakeholders to perform consistent trend analyses of our sustainability performance over multiple years, all 2010-2021 sustainability data included in our sustainability reporting is reflective of Ball’s company footprint post-material divestitures and acquisitions. In addition to reporting Ball’s latest environmental performance data online, Ball annually updates historical environmental performance data as necessary if updated emission factors or more accurate activity data become available.

The bulleted list below is a record of material organizational change and the associated impacts on our environmental performance data:

· On June 30, 2016, Ball announced the completion of its acquisition of Rexam PLC and required divestitures, which resulted in significant changes to the company’s manufacturing footprint. All 2010-2020 sustainability data included in our sustainability reporting is reflective of Ball’s company footprint post-close of the Rexam acquisition.

· On June 21, 2018, Ball and Platinum Equity announced an agreement to form a tinplate steel food & aerosol container joint venture, to be named Ball Metalpack, and the deal was completed on July 31, 2018. Platinum Equity owns 51% of Ball Metalpack and Ball Corporation now owns 49%. As of this date the Metalpack assets are no longer under the operational control of Ball and are therefore outside the scope of Ball’s environmental performance reporting requirement. All 2010-2020 sustainability data included in our CDP submission as well as the Ball Sustainability website are reflective of Ball’s 2018 divestiture of Metalpack.

· On September 30, 2019 Ball divested its Chinese Beverage Packaging operations, which included four beverage can manufacturing facilities. All 2010-2020 sustainability data included in our CDP submission as well as the Ball Sustainability website are reflective of Ball’s 2019 divestiture of its Chinese Beverage Packaging operations.

· On August 31, 2020 Ball acquired Tubex Industria E Comercio de Embalagens Ltda., an impact extruded aluminium aerosol packaging business that includes one manufacturing plant in Itupeva, which is near Sao Paolo, Brazil. All 2017-2020 sustainability data included in our CDP submission as well as the Ball Sustainability website are reflective of Ball’s 2020 acquisition of Tubex Industria E Comercio de Embalagens Ltda.

For additional information please visit, www.ball.com/sustainability.

C0.2

(C0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
<th>Indicate if you are providing emissions data for past reporting years</th>
<th>Select the number of past reporting years you will be providing emissions data for</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1, 2021</td>
<td>December 31, 2021</td>
<td>No</td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

C0.3

CDP Page 1 of 74
(C0.3) Select the countries/areas in which you operate.
Argentina
Austria
Belgium
Brazil
Canada
Chile
Czechia
Denmark
Egypt
Finland
France
Germany
Hong Kong SAR, China
India
Ireland
Italy
Mexico
Myanmar
Netherlands
Paraguay
Poland
Russian Federation
Saudi Arabia
Serbia
Spain
Sweden
Switzerland
Turkey
United Kingdom of Great Britain and Northern Ireland
United States of America
Viet Nam

(C0.4)

(C0.4) Select the currency used for all financial information disclosed throughout your response.
USD

(C0.5)

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your chosen approach for consolidating your GHG inventory.
Operational control

(C0.8)

(C0.8) Does your organization have an ISIN code or another unique identifier (e.g., Ticker, CUSIP, etc.)?

<table>
<thead>
<tr>
<th>Indicate whether you are able to provide a unique identifier for your organization</th>
<th>Provide your unique identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, a Ticker symbol</td>
<td>BALL</td>
</tr>
</tbody>
</table>

C1. Governance

C1.1

(C1.1) Is there board-level oversight of climate-related issues within your organization?
Yes
(C1.1a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Position of individual(s)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>The highest level of direct responsibility for climate-related issues within Ball resides with Ball’s Nominating/Corporate Governance Committee (the “Committee”), which is a standing committee of Ball’s Board of Directors (the “Board”). Ball’s sustainability efforts, including climate-related issues, are reviewed and discussed by the Nominating/Corporate Governance Committee. In support of their fiduciary duties, the Board has oversight of applicable corporate risks, including climate-related risks, so as to satisfy itself that management has in place appropriate risk management policies and procedures which are functioning as directed. The Committee is responsible for reviewing our performance and strategy related to climate-related risks and opportunities and raising climate-related issues during board meetings, as necessary. Climate-related impacts have become an increasingly prominent aspect of board meetings due to increased demand for low-carbon and circular-products, such as aluminum packaging, to support the global transition towards a low-carbon economy. In October 2021, the Board elected the long-time CEO of Lonely Whale and SI2HZ as a director to increase sustainability-related perspectives on the Board. This new board member has more than 25 years of proven expertise in sustainability and environmental business issues spanning many industries.</td>
</tr>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>Ball's chairman and chief executive officer (CEO), who is on Ball's Board of Directors (the “Board”), is an integral member of Ball's climate-related decision making processes. In 2019, Ball's CEO developed a new the Chief Commercial and Sustainability Officer (CCSO) role to integrate commercial and sustainability strategies into global operations. In 2021, Ball's CEO supported the development and publication of Ball’s 2030 Sustainability Goals, including an ambitious commitment to achieving net zero carbon emissions before 2050. As a Board member, the CEO has a responsibility to ensure that climate-related risks and opportunities among other social, environmental and ethical risks and opportunities are managed appropriately.</td>
</tr>
<tr>
<td>Chief Sustainability Officer (CSO)</td>
<td>In June 2019, Ball created the Chief Commercial and Sustainability Officer (CCSO) role to integrate commercial and sustainability strategies into global operations. In 2021, Ball's CEO supported the development and publication of Ball’s 2030 Sustainability Goals, including an ambitious commitment to achieving net zero carbon emissions before 2050. As a Board member, the CEO has a responsibility to ensure that climate-related risks and opportunities among other social, environmental and ethical risks and opportunities are managed appropriately.</td>
</tr>
</tbody>
</table>

(C1.1b) Provide further details on the board’s oversight of climate-related issues.

<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Scope of board-level oversight</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled – some meetings</td>
<td>Reviewing and guiding strategy</td>
<td><Not Applicable></td>
<td>Ball's Board of Directors meets quarterly. The CCSO is responsible for formally briefing the board on climate-related and other sustainability issues annually in the third quarter board meeting. They are also responsible for reporting accurate and up-to-date information regarding opportunities to reduce climate-related risks in our own operations through emissions reduction projects and opportunities to increase the circularity of our products through supply chain partnerships. For example, in third quarter of the reporting period, the CCSO presented on Ball's strategy and progress on expanding our global renewable energy portfolio. Since 2019, Ball has completed several Virtual Power Purchase Agreements to address Ball’s North American and European electricity loads (excluding Mexico and Russia). With the electricity produced from these projects, plus additional guarantees of origin purchased and retired in Europe, Ball sourced 44% of its global electricity demand in 2021 from renewables. These efforts allowed us to reduce approximately 390,392 metric tons of GHG emissions year-over-year. By expanding our renewable energy portfolio, Ball is leveraging climate-related opportunities to address climate risk. The CCSO's briefing on climate-related and other sustainability issues is considered in conjunction with other board briefings to inform decisions on the overall strategy of each business, business plans, and setting performance objectives for the following year. As sustainability is increasingly integrated into Ball’s commercial strategy, the management of climate-related risk and opportunities extends beyond the boundaries of the CCSO and the Global Sustainability team.</td>
</tr>
<tr>
<td>Randall V. McCall, Jr. & William C. McGahan</td>
<td>Reviewing and guiding business plans</td>
<td>Setting performance objectives</td>
<td>Monitoring and overseeing progress against goals and targets for addressing climate-related issues</td>
</tr>
</tbody>
</table>

(C1.1d) Does your organization have at least one board member with competence on climate-related issues?

<table>
<thead>
<tr>
<th>Board member(s) have competence on climate-related issues</th>
<th>Criteria used to assess competence of board member(s) on climate-related issues</th>
<th>Primary reason for no board-level competence on climate-related issues</th>
<th>Explain why your organization does not have at least one board member with competence on climate-related issues and any plans to address board-level competence in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes 1</td>
<td>Climate-related competence of board member(s) is assessed by their ability to speak to sustainability-related topics in external-facing engagements. Ball's chairman and chief executive officer, who is on Ball's Board of Directors, frequently participates in public communications related to sustainability. In June of 2021, Ball’s CEO spoke to CNBC regarding the sustainability credentials of aluminum packaging directly contributing to increased economic demand. Additionally, in October 2021, the Board elected the long-time CEO of Lonely Whale as a director to increase sustainability-related perspectives. Lonely Whale is an organization committed to driving recycling systems change, developing alternatives to problematic plastics, and creating a community of people committed to a sustainable future. This new board member has more than 25 years of expertise in sustainability and environmental business issues.</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C1.2
Provide incentives for the management of climate-related issues, including the attainment of targets.

<table>
<thead>
<tr>
<th>Type of incentive</th>
<th>Activity incentivized</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Emissions reduction project</td>
<td>The performance of Ball’s Chief Commercial and Sustainability Officer is graded annually, and part of the performance appraisal is based on the development and execution of Ball’s commercial and sustainability strategy. This strategy includes making progress towards Ball’s science-based targets and net zero commitment. To make progress towards the Scope 1 and Scope 2 science-based target, Ball’s CEO supports continued energy efficiency projects and renewable energy procurement. To make progress towards the Scope 3 science-based target, Ball’s CEO supports collaborative supply chain engagement to reduce Scope 3 emissions.</td>
</tr>
<tr>
<td>Monetary reward</td>
<td>Emissions reduction project</td>
<td>The performance of Ball’s Chief Executive Officer is graded annually, and part of the performance appraisal is based on the development and execution of Ball’s commercial and sustainability strategy. This strategy includes making progress towards Ball’s science-based targets and net zero commitment. To make progress towards the Scope 1 and Scope 2 science-based target, Ball’s CEO supports continued energy efficiency projects and renewable energy procurement. To make progress towards the Scope 3 science-based target, Ball’s CEO supports collaborative supply chain engagement to reduce Scope 3 emissions.</td>
</tr>
<tr>
<td>Monetary reward</td>
<td>Supply chain engagement</td>
<td>The performance of Ball’s Chief Commercial and Sustainability Officer is graded annually, and part of the performance appraisal is based on the development and execution of Ball’s commercial and sustainability strategy. This strategy includes making progress towards Ball’s science-based targets and net zero commitment. To make progress towards the Scope 1 and Scope 2 science-based target, Ball’s CEO supports continued energy efficiency projects and renewable energy procurement. To make progress towards the Scope 3 science-based target, Ball’s CEO supports collaborative supply chain engagement to reduce Scope 3 emissions.</td>
</tr>
<tr>
<td>Monetary reward</td>
<td>Energy reduction project</td>
<td>The performance of Ball’s Chief Executive Officer is graded annually, and part of the performance appraisal is based on the development and execution of Ball’s commercial and sustainability strategy. This strategy includes making progress towards Ball’s science-based targets and net zero commitment. To make progress towards the Scope 1 and Scope 2 science-based target, Ball’s CEO supports continued energy efficiency projects and renewable energy procurement. To make progress towards the Scope 3 science-based target, Ball’s CEO supports collaborative supply chain engagement to reduce Scope 3 emissions.</td>
</tr>
<tr>
<td>Monetary reward</td>
<td>Energy reduction project</td>
<td>The performance of Ball’s Chief Executive Officer is graded annually, and part of the performance appraisal is based on the development and execution of Ball’s commercial and sustainability strategy. This strategy includes making progress towards Ball’s science-based targets and net zero commitment. To make progress towards the Scope 1 and Scope 2 science-based target, Ball’s CEO supports continued energy efficiency projects and renewable energy procurement. To make progress towards the Scope 3 science-based target, Ball’s CEO supports collaborative supply chain engagement to reduce Scope 3 emissions.</td>
</tr>
</tbody>
</table>

C1.3a

Provide further details on the incentives provided for the management of climate-related issues (do not include the names of individuals).

<table>
<thead>
<tr>
<th>Type of incentive</th>
<th>Activity incentivized</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td>Emissions reduction project</td>
<td>A process operation manager’s performance is assessed based on the achieved decrease of production costs, among other areas. One way to significantly reduce these costs is through energy efficiency improvements. Through projects such as lighting replacements or awareness campaigns, and maintenance or machinery upgrades, process operation managers contribute directly to our emissions reduction targets. By meeting plant targets, operation managers are rewarded monetarily for their leadership in the plant reaching its goal to reduce emissions.</td>
</tr>
<tr>
<td>Monetary reward</td>
<td>Emissions reduction project</td>
<td>The performance of Ball’s plant managers is graded annually. Part of the plant managers’ performance appraisal is based on the plant’s progress related to six key sustainability metrics, including but not limited to electricity and natural gas. The extent to which plants meet their annual energy efficiency/climate change goals ultimately impacts plant manager grading and future remuneration.</td>
</tr>
<tr>
<td>Monetary reward</td>
<td>Supply chain engagement</td>
<td>The performance of Ball’s Chief Executive Officer is graded annually, and part of the performance appraisal is based on the development and execution of Ball’s commercial and sustainability strategy. This strategy includes making progress towards Ball’s science-based targets and net zero commitment. To make progress towards the Scope 1 and Scope 2 science-based target, Ball’s CEO supports continued energy efficiency projects and renewable energy procurement. To make progress towards the Scope 3 science-based target, Ball’s CEO supports collaborative supply chain engagement to reduce Scope 3 emissions.</td>
</tr>
</tbody>
</table>

Chief Executive Officer (CEO)

Chief Sustainability Officer (CSO)

Facilities manager

Process operation manager

All employees
C2. Risks and opportunities

C2.1

(C2.1) Does your organization have a process for identifying, assessing, and responding to climate-related risks and opportunities?
Yes

C2.1a

(C2.1a) How does your organization define short-, medium- and long-term time horizons?

<table>
<thead>
<tr>
<th></th>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Medium-</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Long-</td>
<td>10</td>
<td></td>
<td>Ball considers the long-term time horizon from 10 years onwards. As stated in the CDP Guidance document, TCFD believes specifying timeframes across sectors could hinder organizations’ consideration of the climate-related risks and opportunities specific to their businesses. Ball recognizes that sensitivity is required in order to assess climate-related issues due to the fact that climate-related risks may have implications over long periods.</td>
</tr>
</tbody>
</table>

C2.1b

(C2.1b) How does your organization define substantive financial or strategic impact on your business?

At Ball, we define substantive impacts from climate-related risk as any significant financial, environmental or social impact to our operations that forces us to stop production based on climate-related risk. Ball recognizes that climate-related risks have the potential to disrupt production directly as well as indirectly, through our value chain. As a quantifiable indicator, the threshold for a financial impact that we would define as substantive to our direct operations would be an impact approximately $30-40 million.

C2.2
(C2.2) Describe your process(es) for identifying, assessing and responding to climate-related risks and opportunities.

Value chain stage(s) covered
- Direct operations
- Upstream
- Downstream

Risk management process
- Integrated into multi-disciplinary company-wide risk management process

Frequency of assessment
- More than once a year

Time horizon(s) covered
- Short-term
- Medium-term
- Long-term

Description of process
Company level identification, monitoring and managing of risks and opportunities ("R&Os") are conducted through divisional planning and controlling processes integrated at all organizational levels. Among the highest level of R&O management is with our Chief Commercial & Sustainability Officer who is responsible for briefing the Board on climate-related impacts. Each business division’s risk management coordinator and upper management executive is responsible for risk management and early identification of R&Os and allocating resources to monitor/manage risks at the asset level. Monthly, divisional teams discuss results of facility energy reports to identify consumption and GHG emissions reduction projects. Bi-weekly meetings are held with divisional presidents to analyze energy issues, R&Os and prioritize projects. All risks are prioritized using a method calculating probability, timeline (near-term, medium-term, or long-term), and potential financial implications. Energy teams depend on engineering and EHS to verify data and provide energy performance data, including trend analysis. Internal audit identifies and documents risk areas. Divisional leaders provide input to the public affairs department ensuring legislative developments, costs of regulatory compliance and rising energy costs are monitored to guide strategic business decisions, including product development and capital projects.

At the facility level R&O assessments include the evaluation of asset risks in our environmental management system. Site-specific analysis regarding current and future risks related to climate change is used to prioritize projects and develop ongoing plans to mitigate risks or minimize potential business impacts. Each facility has its own energy performance improvement plan, which is monitored by energy teams that meet bi-monthly. These energy teams include risk managers who gather advice from insurance companies. These teams are also tasked with identifying opportunities to improve energy efficiency. Opportunities are evaluated based on risk and cost. Locations, logistics, liabilities, location of suppliers and risks to the supply chain are considered, as well as climate change-related risks such as flooding or access to freshwater.

In the reporting period, Ball managed the potential impact of physical risks associated with extreme weather events by implementing this risk management process. In 2021 downtime was recorded in two beverage packaging facilities as a result of climate-related events. However, Ball was able to leverage our diverse and extensive network of manufacturing facilities to manage and mitigate the potential risk of these climate-related events and continue to supply our customers without interruption.

In the reporting period, Ball managed the potential transition risk associated with shifts in customer and consumer preferences by implementing this risk management process. During the reporting period Ball continued to expand its global renewable energy strategy. In 2019 and 2020, Ball negotiated and signed four Virtual Power Purchase Agreements (VPPAs), two of which seek to address Ball’s North American electricity load for its corporate, packaging and aerospace operations and two of which to address approximately 63% of the European aluminum beverage packaging plants (excluding Russia) electricity load. With the electricity produced from these projects, plus additional guarantees of origin purchased and retired in Europe, Ball sourced 44% of its global electricity demand in 2021 from renewables. These renewable energy projects will help to mitigate the risk posed by transitioning to a low carbon economy, and seize an opportunity by building a strategy towards offering a lower carbon product to our customers.

To address both physical climate risks associated with supply chain disruption and transition risk associated with consumer demand for climate-related supply chain engagement, Ball is continuing to pursue Aluminum Stewardship Initiative (ASI) certification and encouraging its aluminum suppliers to achieve certification. ASI certification has two standards with certifications: Performance and Chain of Custody. The Performance standard is a measure of how much effort a company is making to achieve and reduce GHG emissions reduction targets and implements a plan to achieve said targets. The Performance standard also requires aluminum smelters, one of the most emissions-intensive stages of aluminum production, to demonstrate an emissions intensity of 8 MT CO2e/MT Al by 2030. By decreasing their emissions intensity, aluminum smelters will be less exposed to carbon taxes in the transition to a low-carbon economy and Ball will be at a lower risk of increased aluminum prices because the cost of those potential carbon taxes are not passed along to the consumer. Ball became the first business to receive ASI certification in 18 countries in parallel. In November 2021, Ball received certification to the ASI Performance and Chain of Custody standards for our 13 beverage packaging South America plants, as well as our regional office in Brazil. The certification designates Ball as the first aluminum packaging company in South America to achieve both certifications and builds upon the success of our 22 manufacturing plants in Europe, Middle East and Africa (EMEA) that achieved both certifications in 2020. In early 2022, our two beverage can plants in India also received both certifications, meaning 52% of Ball’s packaging plants were ASI certified. We expect all remaining plants to become certified by year-end 2022. Ball is also actively working with its aluminum suppliers to achieve ASI certification as part of its responsible sourcing practices.
CDP

C2.3a

<table>
<thead>
<tr>
<th>Relevance and inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current regulation</td>
<td>Relevance, always included</td>
</tr>
<tr>
<td></td>
<td>Ball, its customers and suppliers are subject to complex federal, state and provincial laws and regulations. All of our facilities are subject to federal, state, provincial and local licensing and regulation by health, environmental, and other agencies in multiple jurisdictions. There are numerous regulatory requirements, but GHG emissions compliance and local environmental compliance (such as air permits in the U.S.) pose the greatest climate-related regulatory risk. Any instances of noncompliance could adversely affect our ability to manufacture or sell our products, and the ability of our customers and suppliers to manufacture and sell their products. In addition, significant environmental, employment-related and other legislation and regulatory requirements exist and are also evolving. The compliance costs associated with current and proposed laws and potential regulations could be substantial, and any failure or alleged failure to comply with these laws or regulations could lead to litigation or governmental action, all of which could adversely affect our financial condition or results of operations. The legal and regulatory teams at Ball are responsible for assessing current and future risks associated with current regulation.</td>
</tr>
<tr>
<td>Emerging regulation</td>
<td>Relevance, always included</td>
</tr>
<tr>
<td></td>
<td>Carbon taxes in single countries or across a confederation of states could negatively impact our operation costs, procurement costs and could potentially increase costs of our packaged goods for the end consumer. As governments around the world develop plans to achieve their stated contribution to the Paris Climate Agreement, national and regional cap and trade schemes will likely be implemented and enforced in countries where Ball operates. Depending on how the boundaries for such schemes will be set, Ball may be impacted by respective schemes in the future. In addition to carbon tax regulations, Ball expects that emerging regulation regarding climate-related disclosures could increase operational costs. In particular the March 2022 announcement from the U.S. Securities and Exchange Commission where they proposed rules that would require registrants (like Ball) to include certain climate-related disclosures in their financial statements and periodic reports will require extensive internal and external resources to secure auditing procedures aligned with the level of ambition of financial institutions. The regional Financial, Legislative and Public Affairs team at Ball are responsible for assessing current and future risks associated with emerging regulations.</td>
</tr>
<tr>
<td>Technology</td>
<td>Relevance, always included</td>
</tr>
<tr>
<td></td>
<td>Our economic and environmental success depends partially on our ability to improve production processes and services. As consumer preferences evolve we must also introduce new products and services to meet changing customer needs. More consumers are demanding products that align with their personal values, particularly as it relates to climate change. According to a Harvard Business Review article titled “Actually, Consumers Do Buy Sustainable Products”, products that are marketed as sustainable grow 5.6 times faster than those that were not. If Ball is unable to implement more efficient production processes or develop new low-carbon products through research and development or licensing of new technology, we may not be able to remain competitive in an evolving market. As a result, our business' financial condition could be adversely affected. As an example of climate-related technology, Ball’s Aluminum Cup was recognized in Fast Company’s 2020 World Changing Ideas Awards with an honorable mention in the consumer products category.</td>
</tr>
<tr>
<td>Legal</td>
<td>Not relevant, explanation provided</td>
</tr>
<tr>
<td></td>
<td>Ball is not currently and does not anticipate being subjected to any climate-related litigation claims based on the calendar year 2021 footprint of our business. The Legal team at Ball is responsible for assessing current and future legal risks. Ball expects that legal risks will be included in future climate-related risk assessments as a result of emerging regulation, in particular the March 2022 announcement from the U.S. Securities and Exchange Commission where they proposed rules that would require registrants (like Ball) to include certain climate-related disclosures in their financial statements and periodic reports.</td>
</tr>
<tr>
<td>Market</td>
<td>Relevance, always included</td>
</tr>
<tr>
<td></td>
<td>Over the past several years, there has been a substantial increase in the demand from consumers - and consequently from our customers and retailers - for low-carbon products. Because consumer perception of the packaging we produce is critical to our business, Ball works towards lowering the carbon intensity of our products while maintaining their integrity. Ball has set science-based targets for its operations as well as its value chain to demonstrate its commitment to lowering the carbon footprint of our products. Ball has also committed to net zero emissions prior to 2050. As an example of our commitment to low-carbon product development to meet market demands, in March of 2021 Damm, a leading beverage company in Spain, achieved Aluminum Stewardship Initiative (ASI) Performance Standard and Chain of Custody Standard certification. From March 2021 onwards, all Damm’s cans, which are supplied by Ball, will be certified according to ASI’s standards for responsible production, sourcing and stewardship. As consumers demand greater sustainability from their packaged goods, the ASI scheme aims to do for aluminum what the Forest Stewardship Council (FSC) did for paper and wood, making sustainability performance a mainstream issue. The Commercial & Sustainability teams at Ball are responsible for assessing current and future market risks.</td>
</tr>
<tr>
<td>Reputation</td>
<td>Relevance, always included</td>
</tr>
<tr>
<td></td>
<td>Reputational risks exist related to ethical conduct and responsible business practices at Ball, within our supply chain and our downstream partners. Reputational risks can significantly impact Ball in many ways. For instance, if our products become less popular due to a failure to set ambitious climate-related goals aligned to the latest climate science, we can lose customers; therefore, revenue. To demonstrate our alignment to the latest climate science and the sustainability-related ambitions of our customers, in 2021 Ball committed to net zero emissions prior to 2050. Furthermore, our reputation plays a part in the talent we attract for our workforces and the overall opinion of the communities in which we live and operate. The Commercial, Sustainability, and Legal teams at Ball are responsible for assessing current and future reputation risks.</td>
</tr>
<tr>
<td>Acute physical</td>
<td>Relevance, always included</td>
</tr>
<tr>
<td></td>
<td>Change in temperature extremes can reduce or increase demand for certain beverages packaged in our containers. In addition, with a higher frequency of extreme weather events comes more extreme weather events, such as hurricanes and flooding. These events can lead to damage to our facilities, causing interruptions in production, transportation or production capacity as well as impact the supply of our materials. In addition, the availability of water can impact the ability of our beverage customers to extract/ use water for their products and can reduce the demand for beverage containers. Tropical cyclones can affect our suppliers, our facilities, our customers as well as disrupt business continuity in our plants. Ball has manufacturing facilities across the world and the potential for physical impacts of climate change varies by region. In case severe weather outbreaks hit regions in which we operate, this can pose threats to the physical structures of our factories, our employees, our communities. Acute physical risks are sometimes included in our Enterprise Risk Management process based on probability of acute weather occurrences. The Enterprise Risk Management team, supported by climate-related input from the Global Sustainability team at Ball, is responsible for assessing current and future physical risks.</td>
</tr>
<tr>
<td>Chronic physical</td>
<td>Relevance, sometimes included</td>
</tr>
<tr>
<td></td>
<td>Rising mean temperatures can impact the operational efficiency of Ball’s beverage manufacturing facilities and beverage packaging demand overall. Rising mean temperatures will require additional costs to maintain comfort cooling in Ball manufacturing facilities located in warm (and warming) climates to ensure the safety of our employees. Ball has three manufacturing facilities in Arizona, U.S. which, according to Climate Central's States At Risk assessment, currently averages more than 50 dangerous heat days/year and is projected to average 80 dangerous heat days/year by 2050 (https://statesatrisk.org/arizona/extreme-heat). Rising temperatures have also long been connected to increases in can beverage sales. The National Oceanic and Atmospheric Administration stated that average annual temperatures in Arizona, U.S. have been rising since 1950’s. Ball has manufacturing facilities in Arizona, U.S. which, according to Climate Central's States At Risk assessment, currently averages more than 50 dangerous heat days/year and is projected to average 80 dangerous heat days/year by 2050 (https://statesatrisk.org/arizona/extreme-heat). Rising temperatures have also long been connected to increases in can beverage sales. The National Oceanic and Atmospheric Administration stated that average annual temperatures in Arizona, U.S. have been rising since 1950’s. In case severe weather outbreaks hit regions in which we operate, this can pose threats to the physical structures of our factories, our employees, our communities. Acute physical risks are sometimes included in our Enterprise Risk Management process based on probability of acute weather occurrences. The Enterprise Risk Management team, supported by climate-related input from the Global Sustainability team at Ball, is responsible for assessing current and future physical risks.</td>
</tr>
</tbody>
</table>

(C2.3)

C2.3 (C2.3) Have you identified any inherent climate-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes

C2.3a

C2.3a (C2.3a) Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.

Identifier

Risk 1

Where in the value chain does the risk driver occur?

Direct operations

Risk type & Primary climate-related risk driver

Emerging regulation
Carbon pricing mechanisms

Primary potential financial impact

Increased direct costs
Due to expanding international climate policy to manage GHG emissions in line with the Paris Agreement's 1.5°C temperature limit and Ball's expanding global footprint, the potential for increased costs from carbon taxes is a risk to Ball. Carbon taxes in single countries or across a confederation of states could negatively impact our operational costs, procurement costs and could potentially increase costs of our packaged goods for the end consumer. Although, none of our manufacturing facilities currently are subject to a direct carbon tax, Ball's can manufacturing, aerosol manufacturing, and office facilities are experiencing indirect costs through carbon taxes on large power producers in countries such as Canada, Chile, and the United Kingdom.

Time horizon
Short-term

Likelihood
Likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
Not Applicable

Potential financial impact figure – minimum (currency)
285,000

Potential financial impact figure – maximum (currency)
1,598,000

Explanation of financial impact figure
Unlike cap and trade schemes, more governments are exploring carbon taxes as politically acceptable tools to decrease GHG emissions. In 2021, our U.S. manufacturing facilities emitted 203,778 metric tons of GHG emissions (Scope 1). If, for example, the US government would introduce a new carbon tax between $5 per metric ton of carbon dioxide emissions and $40 per metric ton of carbon dioxide emissions, Ball could be exposed to a range of additional costs that would impact the competitiveness of our products should additional costs from carbon taxes be passed onto our customers.

Ball assumes a minimum and maximum carbon tax cost based on the minimum and maximum value of the European Union Emissions trading System between January 1st, 2020 - December 31st, 2021 reported by the International Carbon Action Partnership (ICAP) Price Explorer tool. The minimum value was reported as 16.31 (~14 USD) Euros and maximum value was reported as 88.88 Euros (~78 USD) Outside of these direct costs additional costs may occur due to additional administrative requirements and increased electricity, raw material and transportation costs.

MIN = ($14*203,778 MT CO2e Scope 1 = 2,850,000) rounded
MAX = ($78*203,778 MT CO2e Scope 1 = 15,890,000) rounded

Cost of response to risk
296,6650

Description of response and explanation of cost calculation
We monitor changes in regulation and support the forming of opinions based on our expertise. Ball's 1.5°C science-based GHG reduction target, manufacturing energy efficiency measures, investment in innovation, and the use of renewable energy reduces the risk of carbon taxes. Projects associated with these energy efficiency measures in our facilities include, for example, replacing outdated pin oven technologies in our Phoenix, AZ, Extrema, Brazil and Tres Rios, Brazil beverage can manufacturing facilities in 2021.

Ball also is working with its suppliers to test and develop industrial ovens that can run off of electricity rather than fuels. Since 2019, Ball has completed several Virtual Power Purchase Agreements (VPPAs) to address Ball’s North American and European electricity loads (excluding Mexico and Russia). With the electricity produced from these projects, plus additional guarantees of origin purchased and retired in Europe, Ball sourced 44% of its global electricity demand in 2021 from renewables. These efforts allowed us to reduce approximately 390,392 metric tons of GHG emissions year-over-year.

Through our trade associations we also remain engaged in efforts to reduce GHG emissions through policies that further provide incentives for energy efficiency projects. Significant costs associated with these actions are related to capital projects, labor costs and in the case of trade associations, membership fees. Because energy costs are already a significant cost factor, energy efficiency is being continuously improved at our plants and we invest in energy efficiency projects each year. For instance, in 2021 we invested over significantly in energy-related projects globally, $2,966,650 were focused on Scope 1 emissions reductions.

Comment

Identifier
Risk 2

Where in the value chain does the risk driver occur?
Direct operations

Risk type & Primary climate-related risk driver

<table>
<thead>
<tr>
<th>Climate risk type mapped to traditional financial services industry risk classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic physical</td>
</tr>
<tr>
<td>Changing precipitation patterns and types (rain, hail, snow/ice)</td>
</tr>
</tbody>
</table>

Primary potential financial impact
Decreased revenues due to reduced production capacity

Company-specific description
As global precipitation patterns continue to evolve as a result of climate change, Ball is considering the potential financial impact of increased costs to its direct operations. In particular, Ball has several beverage can and aerosol can manufacturing locations in historically subtropical climates that currently lack the infrastructure to adapt to increasingly cooler precipitation patterns. An example of this risk was prominent in February of 2021 where Texas experienced Winter Storm Uri (winter storm) that caused power outages, disrupted manufacturing, and froze/destroyed crops yields. Ball has two can manufacturing facilities located in Texas, one in Conroe and one in Fort Worth, and both experienced production disruptions in February 2021 as a result of this winter storm.
Medium-term

Likelihood
More likely than not

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
1000000

Potential financial impact figure – maximum (currency)
11000000

Explanation of financial impact figure
The financial impact figure was calculated by estimating the cost of potential revenue lost by downtime as a result of more frequent snow/ice in historically subtropical climates. If we were to assume a range of production loss between 10,000,000 cans and 110,000,000 cans across our Texas can manufacturing facilities (Conroe and Fort Worth) for the month of February due to power outages caused by winter storm events, the cost of the lost revenue could have a substantive financial impact. Assuming each can is worth $0.10, we can calculate the range of financial impact due to decreased can production.
MIN = ($0.1*10,000,000 = $1,000,000)
MAX = ($0.1*110,000,000 = $11,000,000)

Cost of response to risk
240000

Description of response and explanation of cost calculation
In the example provided by the February 2021 winter storm in Texas, Ball estimates the cost of addressing this risk as $240,000. In order to increase the resilience of manufacturing operations exposed to extreme climate events, Ball has invested in more resilient equipment and processes. In our Texas can manufacturing facilities (Conroe and Fort Worth) we invested ~$110,000 in rental equipment, including compressors and manlifts and ~$130,000 repairing water-related equipment.an $110,000 + $130,000 = $240,000

Comment

Identifier
Risk 3

Where in the value chain does the risk driver occur?
Downstream

Risk type & Primary climate-related risk driver
Chronic physical
Temperature variability

Primary potential financial impact
Decreased revenues due to reduced demand for products and services

Climate risk type mapped to traditional financial services industry risk classification
<Not Applicable>

Company-specific description
As global temperatures continue to evolve as a result of climate change, Ball is considering financial risks associated with decreased demand from its beverage packaging customers. In particular, as prices for fuels continue to rise, our customers may experience supply chain disruptions as a result of increasing operational costs. In Q3 of 2021, Ball saw decreased demand from carbonated beverage customers in the UK because the region was experiencing carbon dioxide shortages as a result of higher wholesale natural gas prices. CF Industries, a fertilizer company who produced carbon dioxide as a by-product, had to shut down two UK plants because the gas costs to operate these facilities were too high, thus causing a shortage in the region. Two climate-related factors contributed to these high natural gas prices in the UK - 1) natural gas supplies were tight ahead of a prolonged cold winter from 2020-2021 that drained natural gas storage and 2) lower solar and wind output resulted in increased demand for natural gas. Europe continues to experience volatile energy prices as a result of the energy transition and geo-political impacts. As Ball's beverage customers experienced downtime at their filling locations, we saw demand for beverage cans decrease.

Time horizon
Medium-term

Likelihood
More likely than not

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
0

Potential financial impact figure – maximum (currency)
10000000

Explanation of financial impact figure
In the example provided by the Q3 CO2 shortages in the UK, Ball estimates that the potential financial impact for this downstream risk ranges from $0 to $10,000,000.

CDP
addition to the limited availability of carbon dioxide for carbonated beverages, our customers also experienced labor shortages and dunnage shortages, which cumulatively impacted Ball to the tune of $10,000,000. For this exercise, we disclose a range from $0 to $10,000,000. It is incredibly difficult to isolate the potential financial impact of the carbon dioxide shortage among the numerous supply chain disruptions that took place downstream of Ball. Thus contributions from the CO2 event alone could range from $0 to $10,000,000.

Cost of response to risk
125000

Description of response and explanation of cost calculation
In order to mitigate the risk of cooler temperatures causing increased natural gas prices and thus CO2 shortages, Ball is continuing to diversify its beverage packaging portfolio to reduce exposure to risk related to carbonated soft drink markets. For example, Ball has continued to pursue opportunities for aluminum to be the preferred packaging solution for sustainable still water and wine (non-carbonated beverages) products. Entire still water brands have committed to replacing plastic packaging with aluminum bottles. Ball has continued to partner with Mananalu, a still water brand based in Hawaii, to promote aluminum packaging as sustainable alternatives to single-use plastics. We estimate that in 2021 Ball has spent $125,000 on marketing aluminum packaging as a sustainable solution for emerging still water markets.

Comment

C2.4

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes

C2.4a

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.

Identifier
Opp1

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Products and services

Primary climate-related opportunity driver
Shift in consumer preferences

Primary potential financial impact
Increased revenues resulting from increased demand for products and services

Company-specific description
As consumers are becoming more aware of the environmental and health risks associated with single-use plastics, they have demanded leading brands to incorporate more sustainable packaging solutions into their portfolios to support the vision for a circular economy. Personal care companies in particular have set public goals to reduce the amount of plastic in their packaging and increase the recycled content of the packaging they do use. Ball’s aluminum aerosol packaging offers unique and sustainable solutions for single-use recyclable and refillable options in the personal care, household and beverage packaging products categories. Aluminum packaging is the most recycled packaging material in many markets, has a high scrap value, is lightweight, is an abundant resource, has no loss of inherent material properties during recycling, and has a long shelf life. After several years of research and development, Ball Aerosol has designed threaded aluminum bottles for personal care and household products called the InfinityTM bottle. The InfinityTM bottle is infinitely recyclable and back on the shelf in 60 days. As the business continues to pivot into exciting new refillable and recyclable products, we are optimally positioned to help our customers address challenges by providing unique, forward-thinking solutions that balance financial interests with our vision for a more sustainable future.

Time horizon
Short-term

Likelihood
Likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
1500000

Potential financial impact figure – maximum (currency)
15000000

Explanation of financial impact figure
As demand for sustainable personal care products grow, Ball Aerosol has the opportunity to capture larger shares of the personal care packaging market, particularly the natural beauty market which focuses on sustainable practices. It is estimated that by 2024 the natural beauty market will need approximately 3 billion units of packaging product. If Ball Aerosol’s Infinity Bottle were to capture 0.1% to 1% of that market at the average cost of $0.5/unit, then the potential financial opportunity could range from $1,500,000 to $15,000,000.

MIN: 3,000,000,000 units*0.1%*$0.5/unit = $1,500,000
MAX: 3,000,000,000 units*1%*$0.5/unit = $15,000,000
Cost to realize opportunity
575000

Strategy to realize opportunity and explanation of cost calculation
As the demand for sustainable and low carbon packaging continues, Ball has developed a global growth strategy to realize potential opportunities. As part of this strategy, Ball will be investing in promotional materials and increasing commercial team members. Ball estimates by 2025 total spend to realize this opportunity will be $575,000 (the sum of marketing spend ~$200,000 and new hire costs ~$375,000).
$200,000 + $375,000 = $575,000

Comment

Identifier
Opp2

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Products and services

Primary climate-related opportunity driver
Development of new products or services through R&D and innovation

Primary potential financial impact
Increased revenues through access to new and emerging markets

Company-specific description
Ball Aerospace builds complex satellites and spacecraft that simplify everyday tasks from weather prediction to providing to help us understand the complexities of the universe, especially for the National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA) and other organizations. Changes in climate-related regulation may lead to increased demand for Ball Aerospace’s technologies. For example, Ball Aerospace advanced sensor technology on the Landsat Earthserving satellite which observes land use and the interaction between human activity and natural events. In 2021 Ball continued to work on a contract with MethaneSAT LLC to develop an advanced remote sensing instrument that will detect regional and point source methane emissions across the globe from space. Ball expects revenue from climate-related projects to accelerate, particularly as it expands its Environmental Intelligence and Sustainability (EI&S) mission.

Time horizon
Short-term

Likelihood
Likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<NOT APPLICABLE>

Potential financial impact figure – minimum (currency)
7000000

Potential financial impact figure – maximum (currency)
21000000

Explanation of financial impact figure
As changes in regulation may require advanced measuring and monitoring technologies/satellites, new regulation may create new business opportunities for Ball Aerospace to apply its expertise in space-based instruments and sensors as well as satellites. These business opportunities would lead to an increase in demand for our products; therefore revenue would significantly increase. Due to the challenges associated with projecting future contract values, for instance climate-related contracts must be available on the market and then Ball Aerospace must apply and win said contracts, we estimate an annual revenue of $7,000,000 per project. Assuming Ball Aerospace could win between one and three climate-related projects in the short-term, we estimate a total of minimum financial impact to be $7,000,000 and a maximum of $21,000,000 as the potential financial impact.

Cost to realize opportunity
531000

Strategy to realize opportunity and explanation of cost calculation
We engage with our customers (NOAA, NASA, government agencies, etc.) by sponsoring roundtable discussions and industry working groups that address climate change opportunities and changes in regulation. Program reviews and top-to-top meetings aid climate change regulation dialogue. Leveraging leadership positions in trade associations such as Aerospace Industries Association and National Association of Manufacturers creates a platform for continuous dialogue with our customers. To estimate the potential costs to realize climate-related opportunities, we used the average salary of a business development manager at Ball Aerospace. Assuming an average annual salary of $177,000 and three business development managers are dedicated to expanding Ball Aerospace’s climate-related contracts, the total estimated opportunity cost would be $531,000.

Comment

Identifier
Opp3

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Resilience

Primary climate-related opportunity driver
Participation in renewable energy programs and adoption of energy-efficiency measures
Primary potential financial impact
Increased revenues resulting from increased demand for products and services

Company-specific description
Sustainability is critical to Ball’s commercial strategy as we seek to develop low-carbon products across our Aerospace, Aerosol, and Beverage Packaging businesses. Our customers across all businesses are pursuing ambitious sustainability targets related to greenhouse gas (GHG) emissions reductions and circularity. To demonstrate our commitment to GHG emissions reductions, Ball is committed to achieving absolute emissions reductions in its operations 55% and its value chain emissions 16% by 2030 from a 2017 baseline as well as achieving net zero prior to 2050. One of the key strategies to achieving emissions reductions is expanding our renewable energy portfolio. As part of our 2030 Sustainability Goals, Ball has committed to procuring renewable energy to cover 100% of its operations by 2030 (with a mid-term goal of 75% renewable energy coverage by 2025). We were able to make great strides on renewable energy during 2021, with 254 megawatts of new wind energy capacity brought online in the United States, Sweden and Spain through three virtual power purchase agreements that were signed in 2019 and 2020. With the electricity produced from these projects, plus additional guarantees of origin purchased and retired in Europe, Ball sourced 44% of its global electricity demand in 2021 from renewables. These efforts allowed us to reduce approximately 390,392 metric tons of GHG emissions year-over-year. Participating in renewable energy programs and increasing energy efficiency will result in lower-carbon products and position the company as the sustainable supplier of choice.

Time horizon
Short-term

Likelihood
Likely

Magnitude of impact
Medium-low

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
5,856,000

Potential financial impact figure – maximum (currency)
29,289,000

Explanation of financial impact figure
Beverage Packaging North and Central America (BPNCA) is Ball’s largest segment, accounting for 42% of consolidated net sales in 2021. As a result of the material impact this segment has on our environmental footprint, Ball has prioritized renewable energy procurement in this region. In May of 2022 Ball announced its latest virtual power purchase agreement (VPPA) with NextEra Resources, LLC to purchase 151 megawatts of new wind energy. The wind energy center will be located in west Texas and Ball’s portion of the project is expected to produce 600,000 megawatt hours of clean energy annually, enough to address the electricity load of nearly half of Ball’s North America manufacturing facilities. Assuming this continued investment in renewable energy appeals to beverage packaging customers who also have ambitious net zero targets for their supply chain, Ball’s North American Beverage Packaging business has the potential to increase in revenue between 0.1% to 0.5% in the short-term. We estimate a minimum total financial impact of $5,856,000.

2021 BPNCA sales of $5,856,000,000 * 0.1% = $5,856,000

We estimate a maximum total financial impact of $29,289,000.

2021 BPNCA sales of $5,856,000,000 * 0.5% = $29,289,000

Cost to realize opportunity
12,000,000

Strategy to realize opportunity and explanation of cost calculation
To meet the increasing demand for low-carbon products, low-carbon beverage packaging products in particular, Ball has continued to pursue renewable energy procurement globally. As previously mentioned, in May of 2022 Ball announced its latest virtual power purchase agreement (VPPA) with NextEra Resources, LLC to purchase 151 megawatts of new wind energy in west Texas. Ball’s portion of the project is expected to produce 600,000 megawatt hours of clean energy annually. Assuming a price of $20/MWh, the estimated cost of our latest North American VPPA is 600,000 MWh * $20 = $12,000,000

Comment

C3. Business Strategy

C3.1
(C3.1) Does your organization’s strategy include a transition plan that aligns with a 1.5°C world?

Row 1

Transition plan
No, but our strategy has been influenced by climate-related risks and opportunities, and we are developing a transition plan within two years

Publicly available transition plan
<Not Applicable>

Mechanism by which feedback is collected from shareholders on your transition plan
<Not Applicable>

Description of feedback mechanism
<Not Applicable>

Frequency of feedback collection
<Not Applicable>

Attach any relevant documents which detail your transition plan (optional)
<Not Applicable>

Explain why your organization does not have a transition plan that aligns with a 1.5°C world and any plans to develop one in the future
Ball is currently in the process of developing a net zero roadmap which will include a transition plan that aligns with a 1.5°C world.

Explain why climate-related risks and opportunities have not influenced your strategy
<Not Applicable>

(C3.2) Does your organization use climate-related scenario analysis to inform its strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis to inform strategy</th>
<th>Primary reason why your organization does not use climate-related scenario analysis to inform its strategy</th>
<th>Explain why your organization does not use climate-related scenario analysis to inform its strategy and any plans to use it in the future</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, but we anticipate using qualitative and/or quantitative analysis in the next two years</td>
<td>Lack of internal resources</td>
<td>Ball currently considers the probability of identified risks and opportunities; however, Ball does not currently systematically use climate-related scenario analysis to inform our business strategy. Ball anticipates using formal climate-related scenario analysis to inform our business strategy in the next two years. Ball plans to organize a strategic team of appropriate internal stakeholders to examine how to best approach climate-related scenario analysis in regards to Ball's different business units and Ball Corporation overall. Because Ball considers all identified climate-related risk and opportunities in its business strategy development, Ball plans to approach the potential use of climate-related scenario analysis thoughtfully. Ball believes it may take longer than two years to thoughtfully execute on a meaningful climate-related scenario analysis that will have a robust governance and management process to it. Because climate-related scenario analysis includes a significant amount of assumptions that will continue to change, a successful climate-related scenario analysis cannot be performed one time to inform a long-term business strategy. A proper governance process around the formation and update of climate-related scenarios, as well as dedicated resources to the scenario development process in the current and future state of Ball is necessary to successful evaluation and proper incorporation of a climate-related scenario analysis. Ball plans to dedicate resources and establishing proper governance processes to conduct climate-related scenario analysis in the next two years.</td>
</tr>
</tbody>
</table>

(C3.3)
(C3.1a) Did you have an emissions target that was active in the reporting year?

<table>
<thead>
<tr>
<th>Have climate-related risks and opportunities influenced your strategy in this area?</th>
<th>Description of Influence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
<td>Yes</td>
</tr>
<tr>
<td>Supply chain and/or value chain</td>
<td>Yes</td>
</tr>
<tr>
<td>Investment in R&D</td>
<td>Yes</td>
</tr>
<tr>
<td>Operations</td>
<td>Yes</td>
</tr>
</tbody>
</table>

C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?

<table>
<thead>
<tr>
<th>Absolute target</th>
</tr>
</thead>
</table>

C4.1a
(C4.1a) Provide details of your absolute emissions target(s) and progress made against those targets.

<table>
<thead>
<tr>
<th>Target reference number</th>
<th>Abs 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year target was set</td>
<td>2019</td>
</tr>
<tr>
<td>Target coverage</td>
<td>Company-wide</td>
</tr>
<tr>
<td>Scope(s)</td>
<td>Scope 1, Scope 2</td>
</tr>
<tr>
<td>Scope 2 accounting method</td>
<td>Market-based</td>
</tr>
<tr>
<td>Scope 3 category(ies)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Base year</td>
<td>2017</td>
</tr>
<tr>
<td>Base year Scope 1 emissions covered by target (metric tons CO2e)</td>
<td>359743</td>
</tr>
<tr>
<td>Base year Scope 2 emissions covered by target (metric tons CO2e)</td>
<td>808091</td>
</tr>
<tr>
<td>Base year Scope 3 emissions covered by target (metric tons CO2e)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total base year emissions covered by target in all selected Scopes (metric tons CO2e)</td>
<td>1167834</td>
</tr>
<tr>
<td>Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1</td>
<td>100</td>
</tr>
<tr>
<td>Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2</td>
<td>100</td>
</tr>
<tr>
<td>Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes</td>
<td>100</td>
</tr>
<tr>
<td>Target year</td>
<td>2030</td>
</tr>
<tr>
<td>Targeted reduction from base year (%)</td>
<td>55</td>
</tr>
<tr>
<td>Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]</td>
<td>525525.3</td>
</tr>
<tr>
<td>Scope 1 emissions in reporting year covered by target (metric tons CO2e)</td>
<td>466784</td>
</tr>
<tr>
<td>Scope 2 emissions in reporting year covered by target (metric tons CO2e)</td>
<td>444792</td>
</tr>
<tr>
<td>Scope 3 emissions in reporting year covered by target (metric tons CO2e)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)</td>
<td>911576</td>
</tr>
<tr>
<td>% of target achieved relative to base year [auto-calculated]</td>
<td>39.8963924978752</td>
</tr>
<tr>
<td>Target status in reporting year</td>
<td>Underway</td>
</tr>
<tr>
<td>Is this a science-based target?</td>
<td>Yes, and this target has been approved by the Science Based Targets initiative</td>
</tr>
<tr>
<td>Target ambition</td>
<td>1.5°C aligned</td>
</tr>
</tbody>
</table>

Please explain target coverage and identify any exclusions

This absolute target, to reduce Ball's absolute Scope 1 and Scope 2 GHG emissions by 55% against a 2017 baseline, is part of Ball's approved Science-Based Targets. Between 2017 and 2021 Ball has reduced its combined Scope 1 and Scope 2 emissions by 24%. We expect to make considerable progress on this target in the next several years based on the recent signing of several Virtual Power Purchase Agreements.

Plan for achieving target, and progress made to the end of the reporting year

To achieve this Scope 1 and Scope 2 emissions reduction goal Ball has committed to procuring 100% renewable energy by 2030 and increasing energy efficiency within its Beverage Packaging business 30% by 2030. The Beverage Packaging business represents over 85% of Ball’s Scope 1 and 2 emissions footprint, thus by focusing on reducing fuel use through electrification and pursuing opportunities for renewable energy contracts, Ball will make material progress on absolute emissions reductions.

List the emissions reduction initiatives which contributed most to achieving this target
Target reference number
Abs 2

Year target was set
2019

Target coverage
Company-wide

Scope(s)
Scope 3

Scope 2 accounting method
<Not Applicable>

Scope 3 category(ies)
Category 1: Purchased goods and services
Category 2: Capital goods
Category 3: Fuel-and-energy-related activities (not included in Scopes 1 or 2)
Category 4: Upstream transportation and distribution
Category 5: Waste generated in operations
Category 6: Business travel
Category 7: Employee commuting
Category 8: Upstream leased assets
Category 9: Downstream transportation and distribution
Category 10: Processing of sold products
Category 11: Use of sold products
Category 12: End-of-life treatment of sold products
Category 13: Downstream leased assets
Category 14: Franchises
Category 15: Investments

Base year
2017

Base year Scope 1 emissions covered by target (metric tons CO2e)
<Not Applicable>

Base year Scope 2 emissions covered by target (metric tons CO2e)
<Not Applicable>

Base year Scope 3 emissions covered by target (metric tons CO2e)
8489022

Total base year emissions covered by target in all selected Scopes (metric tons CO2e)
8489022

Base year Scope 1 emissions covered by target as % of total base year emissions in Scope 1
<Not Applicable>

Base year Scope 2 emissions covered by target as % of total base year emissions in Scope 2
<Not Applicable>

Base year Scope 3 emissions covered by target as % of total base year emissions in Scope 3 (in all Scope 3 categories)
100

Base year emissions covered by target in all selected Scopes as % of total base year emissions in all selected Scopes
100

Target year
2030

Targeted reduction from base year (%)
16

Total emissions in target year covered by target in all selected Scopes (metric tons CO2e) [auto-calculated]
7130778.48

Scope 1 emissions in reporting year covered by target (metric tons CO2e)
<Not Applicable>

Scope 2 emissions in reporting year covered by target (metric tons CO2e)
<Not Applicable>

Scope 3 emissions in reporting year covered by target (metric tons CO2e)
11876976

Total emissions in reporting year covered by target in all selected scopes (metric tons CO2e)
11876976

% of target achieved relative to base year [auto-calculated]
-249.436419177616

Target status in reporting year
Underway

Is this a science-based target?
Yes, and this target has been approved by the Science Based Targets initiative
Target ambition

2°C aligned

Please explain target coverage and identify any exclusions

This absolute Scope 3 target to reduce Ball's GHGs 16% against a 2017 baseline is part of its approved SBTs. This increase was anticipated because Ball updated its calculation approach to purchased metals to better align with its customers. Different methodologies exist for calculating the embedded GHG emissions of materials such as aluminum. The main difference stems from how recycling credits are being allocated for the material: 1.) A material can get the full credit for avoided emissions by only considering the amount of recycled material used when producing the material (called recycled content, cut-off, or 100:0 allocation). 2.) Or, one can argue that products – like fast moving consumer goods – should get a credit for their real end-of-life recycling rate because only a product that is recyclable and actually recycled creates environmental benefits by replacing the need for more resource and energy intensive production of virgin materials (called end-of-life recycling, substitution, or 0:100 allocation). There is no scientific consensus around which methodology is most appropriate when calculating embedded GHG emissions. Scope 3 GHG emissions from purchased metals published by Ball prior to 2020 were based on the 20:80 method and relied on industry average recycled content values published by regional aluminum trade associations, and recycling rates published by governments and – where not available - estimates based on research conducted by Ball and its partners. From 2020 onwards Ball used the 100:0 approach because Ball has primary data (supplier-specific recycled content values) which will more accurately account for our GHG footprint from purchased metals. Average emission factors for primary aluminum and steel are calculated by adjusting the average grid mix impact. If no specific emissions factor exists for specified tons of purchased metal from a supplier/country/site/metal, then a default figure for that country is used. Ball updated its 2017 baseline Scope 3 data to the 100:0 approach for internal SBT tracking purposes, but Ball has not yet submitted this revision to the SBTi for approval. Thus, for this reporting period Ball maintains the 2017 baseline Scope 3 data as it was first submitted to the SBTi, but the 2021 data have been updated to the 100:0 approach as described above.

Plan for achieving target, and progress made to the end of the reporting year

To achieve this Scope 3 emissions reduction goal Ball has committed to supporting recycling infrastructure and legislation to increase recycling rates and has dedicated numerous resources to partner with suppliers and increase the recycled content of the aluminum we procure. Purchased Goods & Services, namely the purchasing of aluminum, remains the largest contributor to our Scope 3 inventory.

In 2021, we participated in the Aluminium for Climate initiative, part of the Mission Possible Partnership, which is co-led by the World Economic Forum. This initiative is developing Net Zero pathways for the sector in direct collaboration with the industry. In addition to transitioning to fossil free energy sources, an additional way of helping decarbonize direct emissions resulting from primary aluminum production is through the use of inert anode technology for aluminum smelting. Currently, this technology is not commercially available. In 2021, we set up a collaboration with a primary aluminum producer to use several tons of aluminum made with inert anode technology from an industrial pilot to produce aerosol cans with a reduced carbon footprint.

List the emissions reduction initiatives which contributed most to achieving this target

<Not Applicable>

C4.2

(C4.2) Did you have any other climate-related targets that were active in the reporting year?

- **Target(s) to increase low-carbon energy consumption or production**
 - Net-zero target(s)

C4.2a
(C4.2a) Provide details of your target(s) to increase low-carbon energy consumption or production.

Target reference number
Low 1

Year target was set
2020

Target coverage
Company-wide

Target type: energy carrier
Electricity

Target type: activity
Consumption

Target type: energy source
Renewable energy source(s) only

Base year
2020

Consumption or production of selected energy carrier in base year (MWh)
469520

% share of low-carbon or renewable energy in base year
21

Target year
2030

% share of low-carbon or renewable energy in target year
100

% share of low-carbon or renewable energy in reporting year
44

% of target achieved relative to base year [auto-calculated]
29.1139240506329

Target status in reporting year
Underway

Is this target part of an emissions target?
Yes, the achievement of this renewable energy target directly contributes to the absolute emissions reductions required to achieve Ball's Scope 1 & 2 science-based target and ultimately Ball's 2050 net-zero target.

Is this target part of an overarching initiative?
Science Based Targets initiative

Please explain target coverage and identify any exclusions
In order to make progress towards Ball's Scope 1 & 2 science-based target Ball will need to achieve 100% renewable energy procurement across its businesses.

Plan for achieving target, and progress made to the end of the reporting year
We were able to make great strides on renewable energy during 2021, with 254 megawatts of new wind energy capacity brought online in the United States, Sweden and Spain through three virtual power purchase agreements that were signed in 2019 and 2020. With the electricity produced from these projects, plus additional guarantees of origin purchased and retired in Europe, Ball sourced 44% of its global electricity demand in 2021 from renewables. These efforts allowed us to significantly reduce GHG emissions year-over-year.

List the actions which contributed most to achieving this target
<Not Applicable>
(C4.2c) Provide details of your net-zero target(s).

Target reference number
NZ1

Target coverage
Company-wide

Absolute/intensity emission target(s) linked to this net-zero target
Abs1

Target year for achieving net zero
2050

Is this a science-based target?
No, but we anticipate setting one in the next 2 years

Please explain target coverage and identify any exclusions
This target was announced as part of Ball’s 2030 Sustainability goals published in June of 2021 and includes coverage of all Ball Corporation.

Do you intend to neutralize any unabated emissions with permanent carbon removals at the target year?
Yes

Planned milestones and/or near-term investments for neutralization at target year
As milestones towards net zero achievement, Ball aims to achieve its Scope 1 & 2 and Scope 3 science-based targets by 2030. Beyond 2030, Ball will continue to invest in energy efficiency, new technology developments to reduce/replace fossil fuel in its operations, and partner with suppliers to identify sustainable solutions to existing aluminum manufacturing mechanisms.

Planned actions to mitigate emissions beyond your value chain (optional)

C4.3

(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Yes

C4.3a

(C4.3a) Identify the total number of initiatives at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th>Number of initiatives</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under investigation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>To be implemented*</td>
<td>6</td>
<td>224638</td>
</tr>
<tr>
<td>Implementation commenced*</td>
<td>51</td>
<td>5423</td>
</tr>
<tr>
<td>Implemented*</td>
<td>80</td>
<td>54555</td>
</tr>
<tr>
<td>Not to be implemented</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C4.3b

(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th>Estimated annual CO2e savings (metric tonnes CO2e)</th>
<th>Scope(s) or Scope 3 category(ies) where emissions savings occur</th>
<th>Voluntary/Mandatory</th>
<th>Annual monetary savings (unit currency – as specified in C0.4)</th>
<th>Investment required (unit currency – as specified in C0.4)</th>
<th>Payback period</th>
<th>Estimated lifetime of the initiative</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-carbon energy consumption</td>
<td>42667</td>
<td>Scope 2 (market-based)</td>
<td>Voluntary</td>
<td>0</td>
<td>772323</td>
<td>No payback</td>
<td>1-2 years</td>
<td>CDPP</td>
</tr>
</tbody>
</table>
This data represents the Guarantees of Origin purchased for a majority of Ball’s EMEA Beverage manufacturing facilities that were not covered by our Spanish and Swedish VPPAs as part of our global emissions reduction initiative. The renewable energy sources were more diverse than just “Hydropower” as selected here, but there were no options for various renewable energy sources. Hydropower was the majority.

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in production processes</td>
<td>Process optimization</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)

| 9134 |

Scope(s) or Scope 3 category(ies) where emissions savings occur

| Scope 2 (market-based) |

Voluntary/Mandatory

| Voluntary |

Annual monetary savings (unit currency – as specified in C0.4)

| 2382371 |

Investment required (unit currency – as specified in C0.4)

| 3596014 |

Payback period

| 4-10 years |

Estimated lifetime of the initiative

| 6-10 years |

Comment

Ball Beverage Packaging completed 50 electricity efficiency projects in 2021, across 22 can manufacturing facilities globally. One example of process optimization was in Nogara, Italy where production capacity increased between 70-75%, thus increasing electricity efficiency and reducing electricity consumption.

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in production processes</td>
<td>Process optimization</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)

| 220 |

Scope(s) or Scope 3 category(ies) where emissions savings occur

| Scope 1 |

Voluntary/Mandatory

| Voluntary |

Annual monetary savings (unit currency – as specified in C0.4)

| 277541 |

Investment required (unit currency – as specified in C0.4)

| 0 |

Payback period

| 1-3 years |

Estimated lifetime of the initiative

| 6-10 years |

Comment

Ball Beverage Packaging completed 11 gas efficiency projects in 2021, across 3 can manufacturing facilities globally. One example of process optimization was in Sri City, India where the hot water generator set point was lowered from 80 degrees to 75 degrees, thus reducing natural gas consumption.

Initiative category & Initiative type

<table>
<thead>
<tr>
<th>Initiative category & Initiative type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency in production processes</td>
<td>Machine/equipment replacement</td>
</tr>
</tbody>
</table>

Estimated annual CO2e savings (metric tonnes CO2e)

| 2128 |

Scope(s) or Scope 3 category(ies) where emissions savings occur

| Scope 1 |

Voluntary/Mandatory

| Voluntary |

Annual monetary savings (unit currency – as specified in C0.4)

| 298031 |

Investment required (unit currency – as specified in C0.4)

| 1627000 |

Payback period

| 1-3 years |
Estimated lifetime of the initiative
6-10 years

Comment
Ball Beverage Packaging completed 8 gas efficiency projects in 2021 through machine/equipment replacements and smart control systems for our industrial ovens. Four can manufacturing facilities in our South America network replaced burners within the internal bake ovens (also known as IBOs), saving over 5,000 MMBtu/year.

Initiative category & Initiative type

| Energy efficiency in buildings | Lighting |

Estimated annual CO2e savings (metric tonnes CO2e)
584

Scope(s) or Scope 3 category(ies) where emissions savings occur
Scope 2 (market-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in C0.4)
183800

Investment required (unit currency – as specified in C0.4)
101983

Payback period
<1 year

Estimated lifetime of the initiative
6-10 years

Comment
Ball Beverage Packaging completed 4 building efficiency projects in 2021 across 4 can manufacturing facilities globally. Two plants completed LED lighting retrofits in 2021.
C4.5

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products?

Yes

C4.5a

(C4.5a) Provide details of your products and/or services that you classify as low-carbon products.

Level of aggregation

Group of products or services

Taxonomy used to classify product(s) or service(s) as low-carbon

Other, please specify (Internal avoided emissions calculations)

Type of product(s) or service(s)

<table>
<thead>
<tr>
<th>Description of product(s) or service(s)</th>
<th>Type of product(s) or service(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>By recycling metals, up to 95% of the energy (and related GHG emissions) are avoided that would have been required (emitted) to produce the same amount of primary metal. Through packaging collection and recycling programs at the national and regional levels, we support efficient collection and recycling infrastructure and educate consumers about the importance of recycling and its contribution to climate protection. Cans are easy to transport and our customers can transport more product – producing less emissions, due to the high cube utilization and light weight of cans. Because cans do not need to be refrigerated or frozen, this reduces the amount of GHG emissions for customers to enjoy our product.</td>
<td>Aluminum Other, please specify (High recycled content aluminum is a sustainable solution to single-use packaging)</td>
</tr>
</tbody>
</table>

Methodology used to calculate avoided emissions

Other, please specify (With region-specific GHG benefits related to aluminum recycling, a simplified calculation suggests that by recycling 100% of our 2021 production...
scrap, and 69% of the cans produced by Ball in 2021, ~16.9 million tons of CO2e emissions were saved.

Life cycle stage(s) covered for the low-carbon product(s) or service(s)
Cradle-to-cradle/closed loop production

Functional unit used
The functional unit for low-carbon aluminum is t CO2e/t Al. Ball works with suppliers to procure lower-carbon aluminum which is recognized as <4 t CO2e/t Al.

Reference product/service or baseline scenario used
As a comparison, or baseline scenario. Aluminum suppliers that are not incorporating recycled content, not developing renewable energy, and not pursuing fuel-efficient technology produce between 10 and 15 t CO2e/t Al.

Life cycle stage(s) covered for the reference product/service or baseline scenario
Cradle-to-cradle/closed loop production

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario
19650000

Explain your calculation of avoided emissions, including any assumptions
According to European Aluminium, 9.8 metric tons of CO2 are saved for every ton of recycled aluminum. Based on a simplified calculation, we could estimate that by recycling all of our input metals from CY2021 at Ball (post-industrial and post-consumer) at the global rates mentioned above, more than 19.65 million tons of CO2 emissions are saved annually.

Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year
86

Level of aggregation
Group of products or services

Taxonomy used to classify product(s) or service(s) as low-carbon
Other, please specify (Internal avoided emissions calculations)

Type of product(s) or service(s)
Other

Description of product(s) or service(s)
Ball Aerospace helped develop a high performance “green” propellant alternative to the toxic fuel hydrazine. With this alternative, NASA opened a new era of nontoxic green fuels. Ball is part of a team selected to build the first space based instrument to monitor major air pollutants across the North American continent or NASA’s Tropospheric Emissions: Monitoring of Pollution mission that will collect data to advance air quality research on how air pollution affects climate change and air quality on a continental scale.

Have you estimated the avoided emissions of this low-carbon product(s) or service(s)
No

Methodology used to calculate avoided emissions
<Not Applicable>

Life cycle stage(s) covered for the low-carbon product(s) or services(s)
<Not Applicable>

Functional unit used
<Not Applicable>

Reference product/service or baseline scenario used
<Not Applicable>

Life cycle stage(s) covered for the reference product/service or baseline scenario
<Not Applicable>

Estimated avoided emissions (metric tons CO2e per functional unit) compared to reference product/service or baseline scenario
<Not Applicable>

Explain your calculation of avoided emissions, including any assumptions
<Not Applicable>

Revenue generated from low-carbon product(s) or service(s) as % of total revenue in the reporting year
14

C5. Emissions methodology

C5.1

(C5.1) Is this your first year of reporting emissions data to CDP?
No

C5.1a
(C5.1a) Has your organization undergone any structural changes in the reporting year, or are any previous structural changes being accounted for in this disclosure of emissions data?

Row 1

Has there been a structural change?
No

Name of organization(s) acquired, divested from, or merged with
<Not Applicable>

Details of structural change(s), including completion dates
<Not Applicable>

C5.1b

(C5.1b) Has your emissions accounting methodology, boundary, and/or reporting year definition changed in the reporting year?

<table>
<thead>
<tr>
<th>Change(s) in methodology, boundary, and/or reporting year definition?</th>
<th>Details of methodology, boundary, and/or reporting year definition change(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C5.2

(C5.2) Provide your base year and base year emissions.

Scope 1

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
359743

Comment

Scope 2 (location-based)

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
359743

Comment

The SBT verified data only includes Scope 2 market-based emissions

Scope 2 (market-based)

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
808091

Comment

Scope 3 category 1: Purchased goods and services

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
6837770

Comment
Scope 3 category 2: Capital goods

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
464147

Comment

Scope 3 category 3: Fuel-and-energy-related activities (not included in Scope 1 or 2)

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
318761

Comment

Scope 3 category 4: Upstream transportation and distribution

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
275428

Comment

Scope 3 category 5: Waste generated in operations

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
1995

Comment

Scope 3 category 6: Business travel

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
11144

Comment

Scope 3 category 7: Employee commuting

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
24179

Comment

Scope 3 category 8: Upstream leased assets

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
0

Comment
Scope 3 category 9: Downstream transportation and distribution
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
86854
Comment

Scope 3 category 10: Processing of sold products
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
37486
Comment

Scope 3 category 11: Use of sold products
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
0
Comment

Scope 3 category 12: End of life treatment of sold products
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
0
Comment

Scope 3 category 13: Downstream leased assets
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
0
Comment

Scope 3 category 14: Franchises
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
0
Comment

Scope 3 category 15: Investments
Base year start
January 1 2017
Base year end
December 31 2017
Base year emissions (metric tons CO2e)
431258
Comment
Scope 3: Other (upstream)

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
0

Comment

Scope 3: Other (downstream)

Base year start
January 1 2017

Base year end
December 31 2017

Base year emissions (metric tons CO2e)
0

Comment

C5.3

(C5.3) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate emissions.

C6. Emissions data

C6.1

(C6.1) What were your organization's gross global Scope 1 emissions in metric tons CO2e?

Reporting year

Gross global Scope 1 emissions (metric tons CO2e)
466784

Start date
<Not Applicable>

End date
<Not Applicable>

Comment

C6.2

(C6.2) Describe your organization's approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
We are reporting a Scope 2, location-based figure

Scope 2, market-based
We are reporting a Scope 2, market-based figure

Comment
Ball will continue to collect market-based emission factors where available in order to strategically procure our electricity supply based on cost and efforts to achieve our absolute and intensity Science-Based GHG Target.

C6.3
(C6.3) What were your organization’s gross global Scope 2 emissions in metric tons CO2e?

Reporting year

Scope 2, location-based

835437

Scope 2, market-based (if applicable)

444792

Start date

<Not Applicable>

End date

<Not Applicable>

Comment

(C6.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure?

No

(C6.5) Account for your organization’s gross global Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

Evaluation status

Relevant, calculated

Emissions in reporting year (metric tons CO2e)

9844305

Emissions calculation methodology

Supplier-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners

95

Please explain

Purchased metal - Calculated based on metal receipts that have been validated against internal purchase orders and supplier advanced shipping notices and the recycled content of the metal purchased. The data was tracked and managed by regional procurement teams. 3 supply chain phases were considered in calculating the emissions for purchased metals: primary aluminum, secondary refining and rolling. Ball uses the 100:0 method, AKA the “cut-off” approach, to calculate emissions from purchased metals. Using this approach, a material can get full credit for avoiding emissions by only considering the amount of recycled material used when producing the material. The 100:0 approach is applied to each regional emission factor.

The recycled content of the metal purchased was obtained from metal suppliers through Ball’s annual Aluminum Supplier Sustainability Survey. When supplier reporting was delayed, Ball used prior year information as it is the best available primary data.

Ball calculated primary to secondary refining emission factor and primary to secondary rolling emission factor ratios based on the emission factors in the European Aluminum (2018): Environmental Profile Report. These ratios were applied to the primary aluminum emission factors to calculate the regional secondary refining and rolling emission factors.

For Aerosol aluminum purchased from suppliers operating on hydro-powered grid, Ball used a low-carbon emission factor of 4 t CO2e/t of aluminum, as shown in the Carbon Trust’s report “The case for low carbon primary aluminium labelling.”

Other direct materials (ODM) - Calculated based on ODM data obtained from receipts (weight) tracked and managed by regional Beverage and Aerosol procurement teams. Where data was not available for an ODM category, Ball estimated weight based on production.

Purchased metal caps - Calculated based on the volume of aluminum used to manufacture metal bottle caps with the total bottle cap production data obtained from a sales tracking platform and the metal bottle cap weight data obtained from engineering specification documents.

Purchased secondary & tertiary packaging - Calculated based on annual spend data obtained from Ball’s regional sourcing, operations, and finance teams. Where regional spend data was not available for a packaging type, Ball estimated spend data based on production.

Capital goods

Evaluation status

Relevant, calculated

Emissions in reporting year (metric tons CO2e)

830660

Emissions calculation methodology

Spend-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners

0

Please explain

Calculated based on annual spend data obtained from Ball’s Beverage, Aerosol, and Aerospace finance teams. Annual spend is matched with the applicable EEIO emission factor which is in kgCO2e/$ spent.
Fuel-and-energy-related activities (not included in Scope 1 or 2)

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
367401

Emissions calculation methodology
Supplier-specific method
Average data method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
The upstream emissions for Ball’s fuel and energy consumption are calculated from activity data (natural gas, diesel, propane, electricity and steam consumption) used to calculate the Scope 1 and 2 emissions.

Upstream transportation and distribution

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
383771

Emissions calculation methodology
Distance-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Calculated based on shipment data (ship-from and deliver-to locations and mode of transport, including the following options: truck, vessel, truck & vessel, and rail) obtained from Ball’s procurement teams. The transportation distance between the ship-from and deliver-to locations were calculated using the most direct route according to Google Maps and Sea-Distances.org.

Waste generated in operations

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
6388

Emissions calculation methodology
Waste-type-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Waste data are collected at the manufacturing facility level, managed by local environmental health & safety (EHS) teams, and compiled regionally. 2021 waste data were not included among the final assured metrics. DEFRA waste categories include: Landfill, Recycled/Reused ("Closed-loop"), Other Disposal ("Combustion"). North American EPVA waste categories include: Mixed MSW, Mixed Recyclables, and Other Disposal.

Business travel

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
2959

Emissions calculation methodology
Distance-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Please explain
Calculated based on business travel data (mileage and GHG emissions in kgCO2e for air and train travel) obtained through quarterly reports from the third-party travel management organization responsible for all Ball travel.
Employee commuting

Emissions status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
32440

Emissions calculation methodology
Average data method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Calculated based on location-based employee headcount data from Ball’s human resource data collection software and assumptions of commute distance and workdays. Ball assumed that the total number of working days per year in any given country was 220 days. The distance commuted was based on country-level third-party survey data. When survey data was not available, an average distance traveled per day of 20.44 km per day was used based on the information available for the other countries. Ball also assumed there to be one car round-trip journey per day per employee.

For non-manufacturing facilities, Ball used employee attendance data at its regional headquarters to adjust the calculated emissions based on office closures as a result of COVID-19. There were no closures at Ball’s manufacturing facilities necessitating adjustment.

Upstream leased assets

Emissions status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain
In the reporting period, Ball Corporation had no upstream leased assets.

Downstream transportation and distribution

Emissions status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
104835

Emissions calculation methodology
Distance-based method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Ball included emissions related to all Beverage and Aerosol outbound logistics in the downstream transportation and distribution category. Due to the sensitivity of the data related to Ball Aerospace products, Ball excluded its Aerospace products from the calculation of emissions from downstream transportation and distribution. Calculated based on freight distance (outbound) for the transportation of Ball’s products to warehouses and/or customers multiplied by the estimated weight of products sold. The weight of products sold was estimated using procured metal weight multiplied by Ball’s internal manufacturing efficiency rate. Freight distance was obtained from:

- **BPNCA**: third-party transportation management company responsible for compiling BPNCA’s transportation distances throughout the year.
- **Beverage Packaging South America (BPSA)**: freight data was collected for Ball’s manufacturing facility in Brazil. The average distance traveled per can produced in Brazil was calculated and used to estimate the total freight for the remaining three manufacturing facilities in South America - Argentina, Chile, and Paraguay.
- **Beverage Packaging Europe, Middle East, and Africa (BPEMEA)**: Transportation logistics software used by Ball internally.
- All other Beverage Packaging divisions: estimated using an average transport distance of 500 km.
- **Aerosol**: actual and estimated average data obtained from our Supply Chain team.

Processing of sold products

Emissions status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
37803

Emissions calculation methodology
Site-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
The majority of products sold by Ball are completed products, such as cans which are then filled, but are not transformed into other products. One exception is slug manufacturing where Ball sells aluminum slugs to third parties that then impact extrude the slug into an aerosol can. In this case the customer is carrying out a conversion process which Ball does itself for other customers. Therefore the emissions arising from customer conversion can be proxied from average Ball emissions. Emissions from the processing of sold products takes into account the volume of product sold to customers who carry out these conversion processes themselves and the volumes are multiplied by average emission factors for Ball operations completing the same process. Calculated based on the quantity (volume) of aluminum slugs sold to other companies for extrusion into aerosol cans obtained from Ball’s sales database.
Use of sold products

Emission status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
Not Applicable

Emissions calculation methodology
Not Applicable

Percentage of emissions calculated using data obtained from suppliers or value chain partners
Not Applicable

Please explain
Because our packaging products do not require significant amounts of energy during the use phase, we do not consider related emissions in our inventory yet. For our aerospace products the majority of the energy required during the use phase of products is derived from solar power or nuclear batteries. Therefore, there are no relevant scope 3 emissions associated with these products while they are used. Any small emissions from re-positioning satellites are outside the earth’s atmosphere.

End of life treatment of sold products

Emission status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
0

Emissions calculation methodology
Waste-type-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
The end of life treatment of sold products is captured in Category 1: Purchased Goods & Services because the end of life treatment of metals is recycled metals. A recycled content emissions factor captured within our aluminum emissions factor which is used to calculate emissions from purchased metals. By recycling metals, up to 95% of the energy needed to produce virgin metal can be saved (and consequently, the related GHG emissions). That means by recycling our metal products, significant amounts of scope 3 emissions can be saved. That is why we cooperate with suppliers, customers and other stakeholders to increase recycling rates through numerous collection and recycling programs. Examples of programs that we support are described at https://www.ball.com/sustainability/real-circularity

Downstream leased assets

Emission status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
Not Applicable

Emissions calculation methodology
Not Applicable

Percentage of emissions calculated using data obtained from suppliers or value chain partners
Not Applicable

Please explain
This category is not applicable for Ball Corporation as we do not act as a lessor for any entity.

Franchises

Emission status
Not relevant, explanation provided

Emissions in reporting year (metric tons CO2e)
Not Applicable

Emissions calculation methodology
Not Applicable

Percentage of emissions calculated using data obtained from suppliers or value chain partners
Not Applicable

Please explain
This category is not applicable for Ball Corporation as we do not own any franchises.
Investments

Evaluation status
Relevant, calculated

Emissions in reporting year (metric tons CO2e)
266414

Emissions calculation methodology
Average data method
Investment-specific method

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Please explain
Ball’s footprint is calculated using a control approach, which means: For operations controlled by Ball, 100% of the emissions are included in scope 1 and 2, and all other categories of scope 3 from these operations. Joint ventures and investments are included in the Investments category if (1) Ball’s ownership is greater than 15%, (2) the location is a manufacturing facility, and (3) Ball does not have operational control. Calculated based on the joint venture production volume for the most recent year available (provided by the joint venture operator), the percentage of Ball’s share of ownership in the joint venture and internally derived emission factors. In accordance with the GHG protocol guidance, Hanil Can Co. is excluded as Ball divested its share in 2021.

Other (upstream)

Evaluation status
Not evaluated

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain

Other (downstream)

Evaluation status
Not evaluated

Emissions in reporting year (metric tons CO2e)
<Not Applicable>

Emissions calculation methodology
<Not Applicable>

Percentage of emissions calculated using data obtained from suppliers or value chain partners
<Not Applicable>

Please explain

C6.7

(C6.7) Are carbon dioxide emissions from biogenic carbon relevant to your organization?
Yes

C6.7a

(C6.7a) Provide the emissions from biogenic carbon relevant to your organization in metric tons CO2.

<table>
<thead>
<tr>
<th>CO2 emissions from biogenic carbon (metric tons CO2)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 5543</td>
<td>Our Fosie, Sweden beverage can manufacturing plant used 100% biogas in 2021</td>
</tr>
</tbody>
</table>

C6.10
(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Intensity figure
0.000066

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
911576

Metric denominator
unit total revenue

Metric denominator: Unit total
13811000000

Scope 2 figure used
Market-based

% change from previous year
29

Direction of change
Decreased

Reason for change
Increasing renewable energy procurement from 470,000 MWh to 1,100,000 MWh significantly reduced Scope 2 market-based emissions and thus gross combined Scope 1 + Scope 2 market based emissions. Additionally, unit total revenue increased 17% YOY. The result of a smaller numerator and a larger denominator is a reduced intensity 29% in 2021 compared to 2020.

Intensity figure
0.455

Metric numerator (Gross global combined Scope 1 and 2 emissions, metric tons CO2e)
911576

Metric denominator
Other, please specify (Ball uses a Carbon Intensity Index (CII), calculated using the total GHG emissions of each businesses, normalized by a business-specific denominator. Normalization factors are weighted based on the production/sales intensities in the base year.)

Metric denominator: Unit total
2002376

Scope 2 figure used
Market-based

% change from previous year
27

Direction of change
Decreased

Reason for change
The 27% decrease in Ball's Carbon Intensity Index (CII) between 2020 and 2021 was primarily driven by emissions reductions initiatives, including significant renewable energy procurement through VPPAs and the purchase of Guarantees of Origin for beverage can manufacturing facilities in EMEA.

C7. Emissions breakdowns

C7.1

(C7.1) Does your organization break down its Scope 1 emissions by greenhouse gas type?
Yes

C7.1a
C7.1a Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>461579</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>CH₄</td>
<td>245</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>N₂O</td>
<td>252</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>SF₆</td>
<td>53</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ R-410A)</td>
<td>2284</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ R-407C)</td>
<td>644</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ R-404A)</td>
<td>888</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ R-134)</td>
<td>242</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ R-134a)</td>
<td>159</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ PFC-14)</td>
<td>60</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
<tr>
<td>Other, please specify (+ HFC-4310mee)</td>
<td>378</td>
<td>IPCC Fifth Assessment Report (AR5 – 100 year)</td>
</tr>
</tbody>
</table>

C7.2

C7.2 Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>7096</td>
</tr>
<tr>
<td>Austria</td>
<td>6537</td>
</tr>
<tr>
<td>Belgium</td>
<td>0</td>
</tr>
<tr>
<td>Brazil</td>
<td>45678</td>
</tr>
<tr>
<td>Canada</td>
<td>21814</td>
</tr>
<tr>
<td>China</td>
<td>5924</td>
</tr>
<tr>
<td>Czechia</td>
<td>11869</td>
</tr>
<tr>
<td>Danmark</td>
<td>5478</td>
</tr>
<tr>
<td>Egypt</td>
<td>4915</td>
</tr>
<tr>
<td>Finland</td>
<td>3668</td>
</tr>
<tr>
<td>France</td>
<td>17569</td>
</tr>
<tr>
<td>Germany</td>
<td>7047</td>
</tr>
<tr>
<td>Hong Kong SAR, China</td>
<td>0</td>
</tr>
<tr>
<td>India</td>
<td>4575</td>
</tr>
<tr>
<td>Ireland</td>
<td>225</td>
</tr>
<tr>
<td>Italy</td>
<td>4105</td>
</tr>
<tr>
<td>Mexico</td>
<td>19894</td>
</tr>
<tr>
<td>Myanmar</td>
<td>428</td>
</tr>
<tr>
<td>Netherlands</td>
<td>23</td>
</tr>
<tr>
<td>Paraguay</td>
<td>2817</td>
</tr>
<tr>
<td>Poland</td>
<td>416</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>19628</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>3832</td>
</tr>
<tr>
<td>Serbia</td>
<td>15163</td>
</tr>
<tr>
<td>Spain</td>
<td>12769</td>
</tr>
<tr>
<td>Sweden</td>
<td>848</td>
</tr>
<tr>
<td>Switzerland</td>
<td>8599</td>
</tr>
<tr>
<td>Turkey</td>
<td>4454</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>16380</td>
</tr>
<tr>
<td>United States of America</td>
<td>210974</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>4256</td>
</tr>
</tbody>
</table>

C7.3

C7.3 Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

- By business division
- By activity

C7.3a
C7.3a Break down your total gross global Scope 1 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 1 emissions (metric ton CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Beverage Packaging</td>
<td>403188</td>
</tr>
<tr>
<td>Aerosol Packaging</td>
<td>50953</td>
</tr>
<tr>
<td>Ball Aerospace Technologies</td>
<td>12643</td>
</tr>
</tbody>
</table>

C7.3c

C7.3c Break down your total gross global Scope 1 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary Combustion</td>
<td>410933</td>
</tr>
<tr>
<td>Fugitive Emissions</td>
<td>44338</td>
</tr>
<tr>
<td>Refrigerants</td>
<td>7296</td>
</tr>
<tr>
<td>Mobile Combustion</td>
<td>4217</td>
</tr>
</tbody>
</table>

C7.5

C7.5 Break down your total gross global Scope 2 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>11892</td>
<td>11892</td>
</tr>
<tr>
<td>Austria</td>
<td>5833</td>
<td>20</td>
</tr>
<tr>
<td>Belgium</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Brazil</td>
<td>30335</td>
<td>18852</td>
</tr>
<tr>
<td>Canada</td>
<td>1106</td>
<td>1106</td>
</tr>
<tr>
<td>China</td>
<td>18194</td>
<td>18194</td>
</tr>
<tr>
<td>Czechia</td>
<td>25358</td>
<td>12369</td>
</tr>
<tr>
<td>Denmark</td>
<td>3397</td>
<td>6</td>
</tr>
<tr>
<td>Egypt</td>
<td>15794</td>
<td>15794</td>
</tr>
<tr>
<td>Finland</td>
<td>1451</td>
<td>0</td>
</tr>
<tr>
<td>France</td>
<td>3778</td>
<td>1001</td>
</tr>
<tr>
<td>Germany</td>
<td>11673</td>
<td>346</td>
</tr>
<tr>
<td>Hong Kong SAR, China</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>India</td>
<td>23889</td>
<td>23889</td>
</tr>
<tr>
<td>Ireland</td>
<td>4437</td>
<td>0</td>
</tr>
<tr>
<td>Italy</td>
<td>4806</td>
<td>23</td>
</tr>
<tr>
<td>Mexico</td>
<td>48971</td>
<td>48971</td>
</tr>
<tr>
<td>Myanmar</td>
<td>2491</td>
<td>2491</td>
</tr>
<tr>
<td>Netherlands</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>Paraguay</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Poland</td>
<td>16111</td>
<td>0</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>41432</td>
<td>41432</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>23986</td>
<td>23986</td>
</tr>
<tr>
<td>Serbia</td>
<td>32025</td>
<td>2256</td>
</tr>
<tr>
<td>Spain</td>
<td>15361</td>
<td>93</td>
</tr>
<tr>
<td>Sweden</td>
<td>1038</td>
<td>466</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1040</td>
<td>10</td>
</tr>
<tr>
<td>Turkey</td>
<td>9671</td>
<td>0</td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>17031</td>
<td>1958</td>
</tr>
<tr>
<td>United States of America</td>
<td>444623</td>
<td>200083</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>19428</td>
<td>19428</td>
</tr>
</tbody>
</table>

C7.6

C7.6 Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

- By business division
- By activity

C7.6a
(C7.6a) Break down your total gross global Scope 2 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Beverage Packaging</td>
<td>772448</td>
<td>380351</td>
</tr>
<tr>
<td>Aerosol Packaging</td>
<td>28703</td>
<td>28250</td>
</tr>
<tr>
<td>Ball Aerospace Technologies</td>
<td>34286</td>
<td>36191</td>
</tr>
</tbody>
</table>

(C7.6c) Break down your total gross global Scope 2 emissions by business activity.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>825073</td>
<td>434428</td>
</tr>
<tr>
<td>Steam</td>
<td>10364</td>
<td>10364</td>
</tr>
</tbody>
</table>

C7.9

(C7.9) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?

Decreased

(C7.9a) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined), and for each of them specify how your emissions compare to the previous year.

<table>
<thead>
<tr>
<th>Reason</th>
<th>Change in emissions (metric tons CO2e)</th>
<th>Direction of change</th>
<th>Emissions value (percentage)</th>
<th>Please explain calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in renewable energy consumption</td>
<td>245400</td>
<td>Decreased</td>
<td>22.4</td>
<td>In 2021, Ball purchased Guarantees of Origin for several of its European Beverage manufacturing facilities and leveraged the renewable energy from VPPAs as part of our global emissions reduction initiative. Using the Scope 2 market-based calculations for these facilities, the 2021 total MTCO2e = 245,400. However, due to these renewable energy purchases, the Scope 2 market-based calculations for these facilities = 0 MTCO2e in 2021. In 2020, the Scope 2 market-based calculations for these same facilities = 245,400 MTCO2e. Therefore, 245,400 MTCO2e were avoided YOY as a result of Ball’s renewable energy procurement in 2021. In 2020, Ball’s total combined Scope 1 + Scope 2 market-based emissions were 1,096,338 MTCO2e, therefore we arrived at -22.4% reduction. We used the following calculation from CDP’s guidance: (245,400 /1,096,338) * 100 = -22.3 (i.e. 22.4% decrease in emissions).</td>
</tr>
<tr>
<td>Other emissions reduction activities</td>
<td>11844</td>
<td>Decreased</td>
<td>1.08</td>
<td>Numerous energy efficiency projects at various plants were completed during 2021 and consolidation between several manufacturing plants drove efficiency in our production processes. The estimated decrease in GHG emissions from other emission reduction activities implemented in 2021 is 11,844 MTCO2e. In 2020, our total Scope 1 and Scope 2 emissions were 1,096,338 MTCO2e, therefore we arrived at 1.08% reduction. We used the following calculation from CDP’s guidance: (11,844 /1,096,338) * 100 = 1.08 (i.e. 1.08% decrease in emissions).</td>
</tr>
<tr>
<td>Divestment</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisitions</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergers</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in output</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in methodology</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in boundary</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in physical operating conditions</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentified</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td><Not Applicable></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C7.9b
(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?
Market-based

C8. Energy

C8.1

(C8.1) What percentage of your total operational spend in the reporting year was on energy?
More than 0% but less than or equal to 5%

C8.2

(C8.2) Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Indicate whether your organization undertook this energy-related activity in the reporting year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or cooling</td>
<td>Yes</td>
</tr>
</tbody>
</table>

C8.2a

(C8.2a) Report your organization’s energy consumption totals (excluding feedstocks) in MWh.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Heating value</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total (renewable and non-renewable) MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>HHV (higher heating value)</td>
<td>29033</td>
<td>2279063</td>
<td>2304095</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td><Not Applicable></td>
<td>1080178</td>
<td>1419897</td>
<td>2550075</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td><Not Applicable></td>
<td>0</td>
<td>45746</td>
<td>45746</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td><Not Applicable></td>
<td>20812</td>
<td><Not Applicable></td>
<td>20812</td>
</tr>
<tr>
<td>Total energy consumption</td>
<td><Not Applicable></td>
<td>1150023</td>
<td>3740796</td>
<td>4870729</td>
</tr>
</tbody>
</table>

C8.2b

(C8.2b) Select the applications of your organization’s consumption of fuel.

<table>
<thead>
<tr>
<th>Application</th>
<th>Indicate whether your organization undertakes this fuel application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel for the generation of electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of heat</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for the generation of cooling</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of fuel for co-generation or tri-generation</td>
<td>No</td>
</tr>
</tbody>
</table>

C8.2c

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.
Sustainable biomass

Heating value

Total fuel MWh consumed by the organization

MWh fuel consumed for self-generation of electricity

MWh fuel consumed for self-generation of heat

MWh fuel consumed for self-generation of steam

<Not Applicable>

MWh fuel consumed for self-generation of cooling

<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration

<Not Applicable>

Comment

Other biomass

Heating value

Total fuel MWh consumed by the organization

MWh fuel consumed for self-generation of electricity

MWh fuel consumed for self-generation of heat

MWh fuel consumed for self-generation of steam

<Not Applicable>

MWh fuel consumed for self-generation of cooling

<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration

<Not Applicable>

Comment

Other renewable fuels (e.g. renewable hydrogen)

Heating value

Total fuel MWh consumed by the organization

MWh fuel consumed for self-generation of electricity

MWh fuel consumed for self-generation of heat

MWh fuel consumed for self-generation of steam

<Not Applicable>

MWh fuel consumed for self-generation of cooling

<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration

<Not Applicable>

Comment

Coal

Heating value

Total fuel MWh consumed by the organization

MWh fuel consumed for self-generation of electricity

MWh fuel consumed for self-generation of heat

MWh fuel consumed for self-generation of steam

<Not Applicable>

MWh fuel consumed for self-generation of cooling

<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration

<Not Applicable>

Comment
Oil

Heating value
HHV

Total fuel MWh consumed by the organization
87084

MWh fuel consumed for self-generation of electricity
1343

MWh fuel consumed for self-generation of heat
73486

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self-co-generation or self-trigeneration
<Not Applicable>

Comment
Assuming sum of propane and diesel (stationary combustion and mobile combustion)

Gas

Heating value
HHV

Total fuel MWh consumed by the organization
8659

MWh fuel consumed for self-generation of electricity
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self-co-generation or self-trigeneration
<Not Applicable>

Comment
Assuming gasoline

Other non-renewable fuels (e.g. non-renewable hydrogen)

Heating value
HHV

Total fuel MWh consumed by the organization
2208353

MWh fuel consumed for self-generation of electricity
0

MWh fuel consumed for self-generation of heat
2198552

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self-co-generation or self-trigeneration
<Not Applicable>

Comment
Assuming natural gas and jet kerosene
Total fuel

Heating value
HHV

Total fuel MWh consumed by the organization
2304995

MWh fuel consumed for self-generation of electricity
1343

MWh fuel consumed for self-generation of heat
2272038

MWh fuel consumed for self-generation of steam
<Not Applicable>

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self-cogeneration or self-trigeneration
<Not Applicable>

Comment

(C8.2d) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

<table>
<thead>
<tr>
<th>Total Gross generation (MWh)</th>
<th>Generation that is consumed by the organization (MWh)</th>
<th>Gross generation from renewable sources (MWh)</th>
<th>Generation from renewable sources that is consumed by the organization (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity 22155</td>
<td>22155</td>
<td>20812</td>
<td>20812</td>
</tr>
<tr>
<td>Heat 2272038</td>
<td>2272038</td>
<td>28507</td>
<td>28507</td>
</tr>
<tr>
<td>Steam 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cooling 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(C8.2e) Provide details on the electricity, heat, steam, and/or cooling amounts that were accounted for at a zero or near-zero emission factor in the market-based Scope 2 figure reported in C6.3.

Sourcing method
Green electricity products from an energy supplier (e.g. green tariffs)

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Austria

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
42694

Country/area of origin (generation) of the low-carbon energy or energy attribute
Austria

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment

Sourcing method
Unbundled energy attribute certificates (EACs) purchase

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Czechia

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
29435
Country/area of origin (generation) of the low-carbon energy or energy attribute	Czechia	
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	Comment	Europe AIB
Sourcing method	Direct procurement from an off-site grid-connected generator e.g. Power purchase agreement (PPA)	
Energy carrier	Electricity	
Low-carbon technology type	Renewable energy mix, please specify (Mix of RE sources)	
Country/area of low-carbon energy consumption	Denmark	
Tracking instrument used	Please select	
Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)	34092	
Country/area of origin (generation) of the low-carbon energy or energy attribute	Sweden	
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	Comment	VPPA
Sourcing method	Green electricity products from an energy supplier (e.g. green tariffs)	
Energy carrier	Electricity	
Low-carbon technology type	Renewable energy mix, please specify (Mix of RE sources)	
Country/area of low-carbon energy consumption	Finland	
Tracking instrument used	Please select	
Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)	15725	
Country/area of origin (generation) of the low-carbon energy or energy attribute	Finland	
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	Comment	
Sourcing method	Green electricity products from an energy supplier (e.g. green tariffs)	
Energy carrier	Electricity	
Low-carbon technology type	Renewable energy mix, please specify (Mix of RE sources)	
Country/area of low-carbon energy consumption	France	
Tracking instrument used	Please select	
Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)	51844	
Country/area of origin (generation) of the low-carbon energy or energy attribute	France	
Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)	Comment	
Sourcing method	Direct procurement from an off-site grid-connected generator e.g. Power purchase agreement (PPA)	
Energy carrier	Electricity	
Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Germany

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
32840

Country/area of origin (generation) of the low-carbon energy or energy attribute
Spain

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment
Total RE largely covered by VPPA, outstanding MWh covered by GOs

Sourcing method
Green electricity products from an energy supplier (e.g. green tariffs)

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Ireland

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
15075

Country/area of origin (generation) of the low-carbon energy or energy attribute
Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment

Sourcing method
Unbundled energy attribute certificates (EACs) purchase

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Italy

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
16770

Country/area of origin (generation) of the low-carbon energy or energy attribute
Italy

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment
Europe ABI

Sourcing method
Direct procurement from an off-site grid-connected generator e.g. Power purchase agreement (PPA)

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Poland

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
24212

Country/area of origin (generation) of the low-carbon energy or energy attribute
<table>
<thead>
<tr>
<th>Country/area of origin (generation) of the low-carbon energy or energy attribute</th>
<th>Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)</th>
<th>Sourcing method</th>
<th>Tracking instrument used</th>
<th>Energy carrier</th>
<th>Low-carbon technology type</th>
<th>Country/area of low-carbon energy consumption</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbia</td>
<td>40151</td>
<td>Direct procurement from an off-site grid-connected generator e.g. PPA</td>
<td>Please select</td>
<td>Electricity</td>
<td>Renewable energy mix, please specify (Mix of RE sources)</td>
<td>Serbia</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>76930</td>
<td>Direct procurement from an off-site grid-connected generator e.g. PPA</td>
<td>Please select</td>
<td>Electricity</td>
<td>Renewable energy mix, please specify (Mix of RE sources)</td>
<td>Sweden</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>44935</td>
<td>Direct procurement from an off-site grid-connected generator e.g. PPA</td>
<td>Please select</td>
<td>Electricity</td>
<td>Renewable energy mix, please specify (Mix of RE sources)</td>
<td>Spain</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td>Unbundled energy attribute certificates (EACs) purchase</td>
<td></td>
<td>Electricity</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Switzerland

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
43424

Country/area of origin (generation) of the low-carbon energy or energy attribute
Switzerland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment
Europe AIB

Sourcing method
Unbundled energy attribute certificates (EACs) purchase

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
Turkey

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
22862

Country/area of origin (generation) of the low-carbon energy or energy attribute
Turkey

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment

Sourcing method
Green electricity products from an energy supplier (e.g. green tariffs)

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
United Kingdom of Great Britain and Northern Ireland

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
71010

Country/area of origin (generation) of the low-carbon energy or energy attribute
United Kingdom of Great Britain and Northern Ireland

Commissioning year of the energy generation facility (e.g. date of first commercial operation or repowering)

Comment

Sourcing method
Direct procurement from an off-site grid- connected generator e.g. Power purchase agreement (PPA)

Energy carrier
Electricity

Low-carbon technology type
Renewable energy mix, please specify (Mix of RE sources)

Country/area of low-carbon energy consumption
United States of America

Tracking instrument used
Please select

Low-carbon energy consumed via selected sourcing method in the reporting year (MWh)
538992

Country/area of origin (generation) of the low-carbon energy or energy attribute
United States of America
<table>
<thead>
<tr>
<th>Country/area</th>
<th>Consumption of electricity (MWh)</th>
<th>Consumption of heat, steam, and cooling (MWh)</th>
<th>Total non-fuel energy consumption (MWh) [Auto-calculated]</th>
<th>Is this consumption excluded from your RE100 commitment?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>41385</td>
<td>0</td>
<td>41385</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Austria</td>
<td>42886</td>
<td>0</td>
<td>42886</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Belgium</td>
<td>122</td>
<td>0</td>
<td>122</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Brazil</td>
<td>291250</td>
<td>0</td>
<td>291250</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Canada</td>
<td>45314</td>
<td>0</td>
<td>45314</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chile</td>
<td>41139</td>
<td>0</td>
<td>41139</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Czechia</td>
<td>57466</td>
<td>0</td>
<td>57466</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Denmark</td>
<td>34157</td>
<td>0</td>
<td>34157</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Egypt</td>
<td>31392</td>
<td>0</td>
<td>31392</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Finland</td>
<td>15725</td>
<td>0</td>
<td>15725</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>France</td>
<td>70541</td>
<td>0</td>
<td>70541</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Germany</td>
<td>33843</td>
<td>0</td>
<td>33843</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Hong Kong SAR, China</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>India</td>
<td>33027</td>
<td>0</td>
<td>33027</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Ireland</td>
<td>15075</td>
<td>0</td>
<td>15075</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Italy</td>
<td>16851</td>
<td>0</td>
<td>16851</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Mexico</td>
<td>123214</td>
<td>0</td>
<td>123214</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Country/Area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Myanmar</td>
<td>5260</td>
<td>0</td>
<td>5260</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Netherlands</td>
<td>391</td>
<td>0</td>
<td>391</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Paraguay</td>
<td>22469</td>
<td>0</td>
<td>22469</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Poland</td>
<td>24212</td>
<td>0</td>
<td>24212</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>110717</td>
<td>0</td>
<td>110717</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>38948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country/area</td>
<td>Consumption of electricity (MWh)</td>
<td>Consumption of heat, steam, and cooling (MWh)</td>
<td>Total non-fuel energy consumption (MWh) [Auto-calculated]</td>
<td>Is this consumption excluded from your RE100 commitment?</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Serbia</td>
<td>43122</td>
<td>0</td>
<td>43122 [Auto-calculated]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Spain</td>
<td>77398</td>
<td>0</td>
<td>77398 [Auto-calculated]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Sweden</td>
<td>44935</td>
<td>2055</td>
<td>46990 [Auto-calculated]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Switzerland</td>
<td>43555</td>
<td>0</td>
<td>43555 [Auto-calculated]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Turkey</td>
<td>22862</td>
<td>0</td>
<td>22862 [Auto-calculated]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>United Kingdom of Great Britain and Northern Ireland</td>
<td>22862</td>
<td>0</td>
<td>22862 [Auto-calculated]</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>
80232

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
80232

Is this consumption excluded from your RE100 commitment?
<Not Applicable>

Country/area
United States of America

Consumption of electricity (MWh)
1083475

Consumption of heat, steam, and cooling (MWh)
43691

Total non-fuel energy consumption (MWh) [Auto-calculated]
1127166

Is this consumption excluded from your RE100 commitment?
<Not Applicable>

Country/area
Viet Nam

Consumption of electricity (MWh)
29908

Consumption of heat, steam, and cooling (MWh)
0

Total non-fuel energy consumption (MWh) [Auto-calculated]
29908

Is this consumption excluded from your RE100 commitment?
<Not Applicable>

C9. Additional metrics

C9.1

(C9.1) Provide any additional climate-related metrics relevant to your business.

C10. Verification

C10.1

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Verification/assurance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 2 (location-based or market-based)</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 3</td>
<td>Third-party verification or assurance process in place</td>
</tr>
</tbody>
</table>

C10.1a
(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 emissions, and attach the relevant statements.

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement
Ball-ESG-Assurance-Report-Assertion_PwC-3-11-2022_signed.pdf

Relevant standard
ISAE3000

Proportion of reported emissions verified (%)
100

(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Scope 2 approach
Scope 2 location-based

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement
Ball-ESG-Assurance-Report-Assertion_PwC-3-11-2022_signed.pdf

Relevant standard
ISAE3000

Proportion of reported emissions verified (%)
100

(C10.1c) Provide further details of the verification/assurance undertaken for your Scope 2 emissions and attach the relevant statements.

Scope 2 approach
Scope 2 market-based

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement
Ball-ESG-Assurance-Report-Assertion_PwC-3-11-2022_signed.pdf

Relevant standard
ISAE3000

Proportion of reported emissions verified (%)
100

(C10.1c) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Scope 3 category
- Scope 3: Purchased goods and services
- Scope 3: Capital goods
- Scope 3: Fuel and energy-related activities (not included in Scopes 1 or 2)
- Scope 3: Upstream transportation and distribution
- Scope 3: Waste generated in operations
- Scope 3: Business travel
- Scope 3: Employee commuting
- Scope 3: Upstream leased assets
- Scope 3: Investments
- Scope 3: Downstream transportation and distribution
- Scope 3: Processing of sold products
- Scope 3: Use of sold products
- Scope 3: End-of-life treatment of sold products
- Scope 3: Downstream leased assets
- Scope 3: Franchises

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Limited assurance

Attach the statement
Ball-ESG-Assurance-Report-Assertion_PwC-3-11-2022_signed.pdf

Page/section reference
Pages 3 & 4, of 10

Relevant standard
ISAE3000

Proportion of reported emissions verified (%)
100

C10.2

(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?
Yes

C10.2a

(C10.2a) Which data points within your CDP disclosure have been verified, and which verification standards were used?

<table>
<thead>
<tr>
<th>Disclosure module verification relates to</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8. Energy</td>
<td>Energy consumption</td>
<td>ISAE3000</td>
<td>As part of our annual verification process, Ball has total energy consumption verified along with Scope 1, 2, and 3 GHG Ball-ESG-Assurance-Report-Assertion_PwC-3-11-2022_signed.pdf</td>
</tr>
</tbody>
</table>

C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?
No, but we anticipate being regulated in the next three years

C11.1d
Ball’s strategy for complying with future regulation under carbon pricing systems is a combination of increasing efficiency and growing our share of renewable energy use, which is also in line with our strategy to achieve our Science-Based Targets and net zero ambition. Ball anticipates being regulated by a carbon pricing system in the next 3 years.

In the reporting period, Ball has made progress towards our 1.5°C aligned operational science-based target (SBT). In 2018 the IPCC determined that limiting global temperature rise to 2°C above pre-industrial levels would not be sufficient to limit global warming. Instead, the IPCC as announced that the level of decarbonization required to limit global warming is 1.5°C compared to pre-industrial levels. As a result, Ball’s revised and approved SBT is aligned to a 1.5°C scenario. We are committed to a 55% absolute reduction of Scope 1 and Scope 2 emissions by 2030, double the absolute emissions reductions from our previous 2°C scenario target. The 2018 IPCC report also stated the following: “Reaching and sustaining net zero global anthropogenic CO2 emissions and declining net non-CO2 radiative forcing would halt anthropogenic global warming on multi-decadal time scales (high confidence).” By increasing energy efficiency, reducing stationary and mobile fossil fuel use, and increasing the share of our renewable energy, Ball will strive to significantly reduce our Scope 1 and Scope 2 greenhouse gas emissions and achieve net zero prior to 2050. This dual strategy not only helps us achieve our emission reduction targets but also help us comply with the direct and indirect costs (higher energy prices) of potential future carbon pricing system regulations.

To execute this strategy, in 2018 Ball organized an internal renewable energy team consisting of members of the sustainability team, energy procurement, treasury, finance, accounting, government relations, and communications. In 2019, Ball negotiated and signed two Virtual Power Purchase Agreements (VPPAs) with a goal to address Ball’s North American electricity load utilized in its corporate, packaging and aerospace operations. In 2020, Ball signed two long-term VPPAs to address our European electricity load. These European VPPAs will cover the electricity load of approximately 10 beverage packaging plants. In the 2021 reporting period, renewable energy was procured on behalf of several North American and European manufacturing facilities as a result of the online VPPAs and the procurement of Guarantees of Origin. In May of 2022 Ball announced its latest virtual power purchase agreement (VPPA) with NextEra Resources, LLC to purchase 151 megawatts of new wind energy. The wind energy center will be located in west Texas and Ball’s portion of the project is expected to produce 600,000 megawatt hours of clean energy annually. Our Legal and Public Affairs teams are key to informing Ball of potential carbon pricing regulation, which will further inform the decision of what future region or countries to focus our next renewable energy efforts along with other variables such as location-based and supplier-specific Scope 2 emission intensities.

(C11.2) Has your organization originated or purchased any project-based carbon credits within the reporting period?
No

(C11.3) Does your organization use an internal price on carbon?
No, and we do not currently anticipate doing so in the next two years

(C12.1) Do you engage with your value chain on climate-related issues?
Yes, our suppliers
Yes, our customers/clients
Yes, other partners in the value chain
(C12.1a) Provide details of your climate-related supplier engagement strategy.

Type of engagement
Information collection (understanding supplier behavior)

Details of engagement
Collect climate change and carbon information at least annually from suppliers

% of suppliers by number
20

% total procurement spend (direct and indirect)
50

% of supplier-related Scope 3 emissions as reported in C6.5
85

Rationale for the coverage of your engagement
The majority of our Scope 3 emissions derive from metal production. GHG emissions from metal production highly correlate with the recycling rate of the respective material in the respective country or region. Based on an average European aluminum beverage can recycling rate of 74%, for example, the ratio of GHG emissions from metal production and can manufacturing (in Europe) is roughly 4:1. That is why – in addition to our own efforts to improve energy efficiency in our plants – we are cooperating with our suppliers and other partners to better understand their processes and their own Scope 1 and Scope 2 emission reduction opportunities. Since we started developing a Science-Based Target in 2016, we have been reaching out to all aluminum for specific energy and GHG information. These suppliers represent more than 50% of our total spend in 2021.

Impact of engagement, including measures of success
Based on the information that we have collected, Ball has been able to more accurately capture our Scope 3 emissions and develop a Science-Based Scope 3 emissions target, a 16% reduction by 2030 from a 2017 baseline. Ball plans to use this new target to further engage suppliers on value chain emissions management. Ball defines success by increasing recycling rates globally towards 100%. In June 2021, Ball published its 2030 Sustainability Goals which includes a goal to align the industry to achieve a 90% global recycling rate for aluminum beverage cans, bottles and cups.

Comment

(C12.1b) Give details of your climate-related engagement strategy with your customers.

Type of engagement & Details of engagement

| Collaboration & innovation | Run a campaign to encourage innovation to reduce climate change impacts |

% of customers by number
30

% of customer-related Scope 3 emissions as reported in C6.5
0

Please explain the rationale for selecting this group of customers and scope of engagement
We continue to share and discuss insights from life cycle assessments of our products with our customers. In 2020 Ball conducted a peer reviewed comparative Life Cycle Assessment for beverage packaging across the U.S., Europe and Brazil. When launching our RealCircularity campaign, A Vision for a Perfect Circle, we engaged our customers and repeatedly presented on the findings of our research to better inform their packaging decisions and the risk of not considering real circularity as we transition to a low carbon economy. The results of this LCA show that the extraction and processing of raw materials create the major environmental impacts related to the environmental footprint of beverage cans, and that lightweighting and recycling reduces those impacts by reducing the need for raw materials. Based on the LCA results, we identified the processes with the highest impacts and the most effective options to reduce those impacts together.

Impact of engagement, including measures of success
Engagement on life cycle information makes it easier to initiate new projects within our supply chain to reduce the environmental impacts of metal cans even more. Ball defines success by the number of customers to which we are aligned regarding environmental goals. Specifically, Ball considers its engagement successful if its emissions reduction efforts align with 100% of our key customer’s science-based targets and net zero targets. In June 2021, Ball published its 2030 Sustainability Goals which includes a category of goals focused on Real Circularty and a commitment to net zero prior to 2050. The long-term ambition for our Real Circularty goal is to create the perfect circle for our packaging products in which materials can be used in perpetuity, which will require collaboration with suppliers and customers.

(C12.1d)
(C12.1d) Give details of your climate-related engagement strategy with other partners in the value chain.

Recycling of our metal packaging is the biggest opportunity to reduce the carbon footprint of metal packaging. That is why we engage with suppliers, customers and other stakeholders such as communities, consumers, and recycling markets to further increase recycling rates of metal packaging (www.ball.com/recycling). Our primary method of engagement is through collaborative partnerships such as The Recycling Partnership and the Every Can Counts campaign. Ball has worked with key customers to support The Recycling Partnership which has made a meaningful impact on recycling rates in the U.S. In 2019 Ball established a Public Affairs team to better communicate and engage all stakeholders on the importance of increasing recycling rates and achieving real circularity. In 2020 the Public Affairs team launched our Real Circularity campaign which aims to develop partnerships within the aluminum industry to improve recycling rates, increase recycled content, design for circularity, and support policies and infrastructure that maximize recycling yields (https://www.ball.com/realcircularity). At its purest, real circularity involves the continuous recovery and reuse of materials, with nothing lost during the process. In terms of recycling, this means that all materials are properly collected and sorted, then each part of each product is separated out and fully recycled with minimum material loss, to become part of a product of similar value.

Furthermore, Ball is an active member of the Aluminum Stewardship Initiative (ASI, http://aluminium-stewardship.org) and serves on the ASI Standards Committee. ASI’s objective is to develop a standard to foster responsible environmental, social and governance principles and performance throughout the aluminum value chain. The standard will apply to all aluminum value chain stages, from bauxite mining to smelting, material conversion, consumer/commercial goods suppliers and recycling. It addresses critical industry issues, including energy and greenhouse gas emissions, waste management, biodiversity and land management, pollution, resource efficiency, recycling, labor rights, indigenous rights and transparency. ASI members include organizations from different sectors, including production and transformation, industrial users and civil society. Several of our suppliers and some customers, as well as the World Wildlife Fund for Nature (WWF), the International Union for Conservation of Nature (IUCN), and the Institute for Human Rights and Business (IHRB) are ASI members. Additionally, ASI’s PS Standard has various GHG-related requirements for its members, including a threshold of 8 tCO2e/tAlu for smelter emissions. Ball feels that we can have highest impact on climate-related issues in the value chain through cross-collaboration platforms like ASI. Thus, in 2020 and 2021, Ball has encouraged and supported all aluminum suppliers to pursue ASI certification.

(C12.2) Do your suppliers have to meet climate-related requirements as part of your organization’s purchasing process?
Yes, suppliers have to meet climate-related requirements, but they are not included in our supplier contracts

(C12.2a) Provide details of the climate-related requirements that suppliers have to meet as part of your organization’s purchasing process and the compliance mechanisms in place.

<table>
<thead>
<tr>
<th>Climate-related requirement</th>
<th>Implementation of emissions reduction initiatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of this climate related requirement</td>
<td></td>
</tr>
<tr>
<td>Ball has requested that all aluminum suppliers become ASI members, from which suppliers are required to pursue ASI certification within a fixed timeframe. The ASI certification contains specific standards on greenhouse emissions for the aluminum smelting process, with a CO2 emission threshold and annual improvement commitment plan (GHG Emissions Reduction Plan). As of May 2022, members should:</td>
<td></td>
</tr>
<tr>
<td>• Demonstrate that they have put in place the necessary management system, evaluation procedures, and operation controls to limit the direct GHG emissions.</td>
<td></td>
</tr>
<tr>
<td>• (For aluminium smelters starting production after 2020) - Demonstrate that scope 1 and scope 2 GHG emissions from the production of aluminium is < 11 tonnes CO2 equivalent per metric tonne of aluminium.</td>
<td></td>
</tr>
<tr>
<td>• (For aluminium smelters in production up to and including 2020) - Demonstrate that the Scope 1 and Scope 2 GHG emissions from the production of aluminium is < 11 tonnes CO2 equivalent per metric tonne of aluminium or has been reduced by a minimum of 10% over the previous 3 reporting periods and;</td>
<td></td>
</tr>
<tr>
<td>i. < 13 tonnes CO2 equivalent per metric tonne of aluminium by 2025 and;</td>
<td></td>
</tr>
<tr>
<td>ii. < 11 tonnes CO2 equivalent per metric tonne of aluminium by 2030.</td>
<td></td>
</tr>
</tbody>
</table>

Further details can be found here: https://aluminum-stewardship.org/asi-standards/asi-performance-standard

| % suppliers by procurement spend that have to comply with this climate-related requirement | 61.28 |
| % suppliers by procurement spend in compliance with this climate-related requirement | 28.8 |

Mechanisms for monitoring compliance with this climate-related requirement
Certification
Supplier self-assessment

Response to supplier non-compliance with this climate-related requirement
Retain and engage
(C12.3) Does your organization engage in activities that could either directly or indirectly influence policy, law, or regulation that may impact the climate?

Row 1

Direct or indirect engagement that could influence policy, law, or regulation that may impact the climate

Yes, we engage directly with policy makers
Yes, we engage indirectly through trade associations

Does your organization have a public commitment or position statement to conduct your engagement activities in line with the goals of the Paris Agreement?

No, and we do not plan to have one in the next two years

Attach commitment or position statement(s)

<Not Applicable>

Describe the process(es) your organization has in place to ensure that your engagement activities are consistent with your overall climate change strategy

At Ball, we engage on public policy through participation in various trade associations. We utilize communications on our intranet to ensure our employees are informed about and have access to our positions on any sustainability-related topics such as climate change. This process for utilizing internal dashboard communications ensures all engagement is consistent because the employees who interact both directly and indirectly with policy makers and trade associations are required to read, understand and align with these internal communications, and applicable internal policies.

Primary reason for not engaging in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate

<Not Applicable>

Explain why your organization does not engage in activities that could directly or indirectly influence policy, law, or regulation that may impact the climate

<Not Applicable>

(C12.3a) On what policy, law, or regulation that may impact the climate has your organization been engaging directly with policy makers in the reporting year?

Focus of policy, law, or regulation that may impact the climate

Circular economy

Specify the policy, law, or regulation on which your organization is engaging with policy makers

Ball supports provisions in the Break Free From Plastic Pollution Act designed to strengthen the U.S. recycling system, especially for aluminum beverage cans. Because manufacturing virgin aluminum is extremely energy intensive, recycling aluminum cans and improving recycling systems dramatically reduce the GHG footprint of the product. The results of the LCA sensitivity analysis indicates that the high material circularity for aluminum cans has substantial environmental benefits related to global warming potential (GWP), while the GWP of other beverage packaging products, like beverage cartons, increased with collection due to the extensive fossil energy sources needed.

Policy, law, or regulation geographic coverage

National

Country/region the policy, law, or regulation applies to

United States of America

Your organization’s position on the policy, law, or regulation

Support with no exceptions

Description of engagement with policy makers

Ball lobbied Members of the U.S. House and Senate in support of passage of the Break Free From Plastic Pollution Act.

Details of exceptions (if applicable) and your organization’s proposed alternative approach to the policy, law or regulation

<Not Applicable>

Have you evaluated whether your organization’s engagement is aligned with the goals of the Paris Agreement?

No, we have not evaluated

C12.3b
(C12.3b) Provide details of the trade associations your organization engages with which are likely to take a position on any policy, law or regulation that may impact the climate.

Trade association
Business Roundtable

Is your organization’s position on climate change consistent with theirs?
Consistent

Has your organization influenced, or is your organization attempting to influence their position?
We are not attempting to influence their position

State the trade association’s position on climate change, explain where your organization’s position differs, and how you are attempting to influence their position (if applicable)
Business Roundtable supports a comprehensive policy to reduce GHG emissions and ultimately stabilize atmospheric concentrations at levels that will avoid the worst effects and mitigate the impacts of climate change.

Funding figure your organization provided to this trade association in the reporting year, if applicable (currency as selected in C0.4) (optional)
250000

Describe the aim of your organization’s funding
Our aim with this funding is to support the Business Roundtable’s mission of promoting a thriving U.S. economy and expanding opportunities for all Americans through sound public policies.

Have you evaluated whether your organization’s engagement with this trade association is aligned with the goals of the Paris Agreement?
No, we have not evaluated

C12.4

(C12.4) Have you published information about your organization’s response to climate change and GHG emissions performance for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

Publication
In mainstream reports, in line with the CDSB framework (as amended to incorporate the TCFD recommendations)

Status
Complete

Attach the document
BallCorp_2021_10K.pdf

Page/Section reference
19 & 21

Content elements
Governance
Strategy
Risks & opportunities

Comment

Publication
In voluntary communications

Status
Complete

Attach the document
BALL_datacenter.png

Page/Section reference
1

Content elements
Emissions figures
Other metrics

Comment
Ball’s Data Center contains several metrics, including emissions, energy, water, waste, and VOCs. https://www.ball.com/data-center

C15. Biodiversity

C15.1
(C15.1) Is there board-level oversight and/or executive management-level responsibility for biodiversity-related issues within your organization?

<table>
<thead>
<tr>
<th>Board-level oversight and/or executive management-level responsibility for biodiversity-related issues</th>
<th>Description of oversight and objectives relating to biodiversity</th>
<th>Scope of board-level oversight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No, but we plan to have both within the next two years</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

(C15.2) Has your organization made a public commitment and/or endorsed any initiatives related to biodiversity?

<table>
<thead>
<tr>
<th>Indicate whether your organization made a public commitment or endorsed any initiatives related to biodiversity</th>
<th>Biodiversity-related public commitments</th>
<th>Initiatives endorsed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No, but we plan to do so within the next 2 years</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

(C15.3) Does your organization assess the impact of its value chain on biodiversity?

<table>
<thead>
<tr>
<th>Does your organization assess the impact of its value chain on biodiversity?</th>
<th>Portfolio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No, but we plan to assess biodiversity-related impacts within the next two years</td>
</tr>
</tbody>
</table>

(C15.4) What actions has your organization taken in the reporting year to progress your biodiversity-related commitments?

<table>
<thead>
<tr>
<th>Have you taken any actions in the reporting period to progress your biodiversity-related commitments?</th>
<th>Type of action taken to progress biodiversity-related commitments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No, we are not taking any actions to progress our biodiversity-related commitments, but we plan to within the next two years</td>
</tr>
</tbody>
</table>

(C15.5) Does your organization use biodiversity indicators to monitor performance across its activities?

<table>
<thead>
<tr>
<th>Does your organization use indicators to monitor biodiversity performance?</th>
<th>Indicators used to monitor biodiversity performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>No</td>
</tr>
</tbody>
</table>

(C15.6) Have you published information about your organization’s response to biodiversity-related issues for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

<table>
<thead>
<tr>
<th>Report type</th>
<th>Content elements</th>
<th>Attach the document and indicate where in the document the relevant biodiversity information is located</th>
</tr>
</thead>
<tbody>
<tr>
<td>No publications</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C16. Signoff

C-FI
This release contains “forward-looking” statements concerning future events and financial performance. Words such as "expects," "anticipates," "estimates," "believes," and similar expressions typically identify forward-looking statements, which are generally any statements other than statements of historical fact. Such statements are based on current expectations or views of the future and are subject to risks and uncertainties, which could cause actual results or events to differ materially from those expressed or implied. You should therefore not place undue reliance upon any forward-looking statements and they should be read in conjunction with, and qualified in their entirety by, the cautionary statements referenced below. The Company undertakes no obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise. Key factors, risks and uncertainties that could cause actual outcomes and results to be different are summarized in filings with the Securities and Exchange Commission, including Exhibit 99 in our Form 10-K, which are available on our website and at www.sec.gov. Additional factors that might affect: a) our packaging segments include product capacity, supply, and demand constraints and fluctuations and changes in consumption patterns; availability/cost of raw materials, equipment, and logistics; competitive packaging, pricing and substitution; changes in climate and weather; footprint adjustments and other manufacturing changes, including the startup of new facilities and lines; failure to achieve synergies, productivity improvements or cost reductions; unfavorable mandatory deposit or packaging laws; customer and supplier consolidation; power and supply chain interruptions; changes in major customer or supplier contracts or loss of a major customer or supplier; inability to pass through increased costs; war, political instability and sanctions, including relating to the situation in Russia and Ukraine and its impact on our supply chain and our ability to operate in Russia and the EMEA region generally; changes in foreign exchange or tax rates; and tariffs, trade actions, or other governmental actions, including business restrictions and shelter-in-place orders in any country or jurisdiction affecting goods produced by us or in our supply chain, including imported raw materials; b) our aerospace segment include funding, authorization, availability and returns of government and commercial contracts; and delays, extensions and technical uncertainties affecting segment contracts; c) the Company as a whole include those listed above plus: the extent to which sustainability-related opportunities arise and can be capitalized upon; changes in senior management, succession, and the ability to attract and retain skilled labor; regulatory actions or issues including those related to tax, ESG reporting, competition, environmental, health and workplace safety, including U.S. FDA and other actions or public concerns affecting products filled in our containers, or chemicals or substances used in raw materials or in the manufacturing process; technological developments and innovations; the ability to manage cyber threats; litigation; strikes; disease; pandemic; labor cost changes; inflation; rates of return on assets of the Company’s defined benefit retirement plans; pension changes; uncertainties surrounding geopolitical events and governmental policies, including policies, orders, and actions related to COVID-19; reduced cash flow; interest rates affecting our debt; and successful or unsuccessful joint ventures, acquisitions and divestitures, including the announced sale of our Russian business, and their effects on our operating results and business generally.

C16.1

(C16.1) Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Commercial and Sustainability Officer</td>
<td>Chief Sustainability Officer (CSO)</td>
</tr>
</tbody>
</table>

Page 59 of 74