Optical Autocovariance Wind Lidar (OAWL) Evolution

2008-2012: OAWL IP-07
- Breadboard system, Single look
- 355 nm board, 4x channels
- Ground validation with NOAA MOPA
- Coherent detection system
- Autonomous flight tests on NASA WB-57

2014-2017: HAWC-OAWL IIP
- Two-look/two-wavelength airborne system built for DC-8 integration
- Added depolarization channels for aerosol studies
- High altitudes have fewer aerosols & clouds, so UV wavelengths are used to measure winds using lidar returns from just molecules (e.g. ESA's Aeolus mission)

ATHENA-OAWL: Proposed Space-based Demonstration DWL mission that builds on:
- Proven CALIPSO lidar technologies: Laser (532 nm), Telescopes, optics, processing
- Demonstrated wind measurements from ground & airborne platforms
- ISS enabling technologies: Mass, Cooling system, TDRSS downlink

High altitudes: Fewer aerosols & clouds, so UV wavelengths are used to measure winds using lidar returns from just molecules (e.g. ESA’s Aeolus mission)

Data GAP: Upper level wind profiles over the oceans and Southern Hemisphere.

Aerosol-DWL’s provide good returns in lower troposphere and where aerosol layers or thin clouds are present

Airborne & ground DWLs are ideal for boundary layer dynamics studies that can be smeared by space-based orbit speeds (~7.2 km/s)

2015-2017: ATHENA-OAWL Venture-Tech: GrOAWL
- Airborne demonstrator System WB-57
- 2 looks: 2 lasers & 2 telescopes to demonstrate the 2-look geometry for space for wind speed & direction profiles
- Real time wind speed processing

2014-2017: HAWC-OAWL IIP
- Two-look/two-wavelength airborne system built for DC-8 integration
- Added depolarization channels for aerosol studies

Solution: Space-based Doppler Wind Lidar (DWL)

OAWL Based Solutions

OAWL path to *full* atmospheric wind profiles:
- Two wavelengths and two “nested” receivers measure winds from both aerosols AND molecules
 - @ 532 nm – more precision using the *aerosol returns*
 - @ 355 nm – more coverage using the *molecular returns*

Applicable for airborne and Space-based configurations - but ideal for space