

COMPARATIVE LIFE CYCLE ASSESSMENT: BRAZIL

About Life

Cycle Assessment

LCA is a technique for assessing the environmental impacts associated with a product, by

- Compiling an inventory of relevant inputs and outputs of a product system,
- Evaluating the potential environmental impacts associated with those inputs and outputs,
- Interpreting the results of the inventory analysis and impact assessment phases in relation to the objectives of the study.

While this presentation focuses on Global Warming Potential and some other environmental impact categories, the full Sphera LCA considered all categories recommended by ReciPe Guidelines

PURPOSE

- Identify environmental hotspots along a product's life cycle.
- Add an environmental dimension for decisionmakers to explore new design solutions.
- Monitor environmental footprint improvements of a product over time.
- Inform internal decision makers.
- Compare existing products with alternatives.
- Inform and educate external stakeholders, incl. legislators.
- Support product claims.

LIMITATIONS

- Not an exact science (methodologies, models and assumptions shape results).
- For the same product, different LCAs can suggest opposing findings.
- Not the single answer to all environmental questions.
- Circularity, real recycling rates, recycling yields, economics of recycling, and impacts of e.g. microplastics on the environment and human life are not considered in LCAs.
- Describe one specific situation, cannot be generalised for all.
> A high level of transparency and offering various sensitivity analysis and scenarios in a LCA is important to allow readers to understand the study design, interpret results and draw their own conclusions
- LCAs today are mostly linear instead of applying circular thinking, which would be more appropriate for fast moving consumer goods such as beverage packaging.
- That is why Ball is sponsoring a multi-year PhD program at the University of Barcelona to research limitations of packaging LCAs and develop new and scientifically sound approaches to overcome these limitations.
- Ball will build on these findings and initiate discussions with stakeholders to ensure future LCAs adequately capture the true sustainability performance of beverage packaging.

2

Sphera Comparative
© sphera LCA study

Critical Peer Review Panelv

Dr Pere Fullana

Director of the UNESCO Chair in Life Cycle and Climate Change

Ivo Mersiowsky
Sustainability and leadership consultant, LCA expert (focus chemical and plastics industry)

Angela Schindler

Environmental management consultant, LCA expert (focus modelling, packaging), reviewer for the International Journal of Life Cycle Assessment

GLOBAL WARMING POTENTIAL (CARBON FOOTPRINT) PER LITRE

Carbon footprint comparison per litre


```
SUMMARY WITH SOME ENVIRONMENTAL IMPACT CATEGORIES
```


SUMMARY OF ALL ENVIRONMENTAL IMPACT CATEGORIES

Climate change, default, excl. biogenic carbon [kg CO2 eq.]

Alu. 12oz

Alu. $160 z$

I PET 25cl
(CARBONATED)
I
PET 51cl
(NON-CARBONATED)
$=$
PET 60cl
(CARBONATED)

Glass 35.5cl

Glass 60cl
(REFILLABLE)

Carton 20cl

) sphera
$120 z$ aluminum can

35,5cl glass bottle

$160 z$ aluminum can

60cl glass bottle (20x)

Note: Assumes 20 Refills
$240 z$ aluminum can

60cl glass bottle (5 x)

25cl, 51cl \& 60cl PET bottle

1L beverage carton

90cl PET bottle

20cl beverage carton

Note: MCI methodology includes non-recycled renewables fibres as circular. Other methodologies do not.

SUMMARY AND CONCLUSIONS FOR EACH MATERIAL

| - Strongest performance of all substrates on Global Warming Potential (GWP), benefiting from light weight and
 extremely high recycling rate and recycled content in Brazil
 - Also best scores on Eutrophication and Freshwater Consumption
 - Best material circularity scores of all single-use packaging options (>0.8) |
| :--- | :--- |
| - Higher burdens than cans across all major impact categories, primarily due to oil and gas-related impacts and low
 recycled content (average GWP $1.5 \times$ that of cans)
 - Low recycling rates (55\%) and recycled content ($0-23 \%$) as well as high recycling yield losses result in worst
 material circularity scores of all substrates (~ 0.3) |
| - Highest environmental impacts for single-use glass in most categories, driven by heavy weight, and very resource
 and energy intensive glass production and recycling
 - Much lower impacts for refillable glass, when considering 20 trips (less favorable when trip number decreases); ;
 even with 20 trips, not close to the cans |
| Best circularity scores for refillable bottles, average for single-use bottles |
| Decent scores on several impact categories close to cans driven by relatively small manufacturing impacts and the
 fact that integrated pulp and paper mills generate most of their energy from biomass intake such as wood offcuts
 Material circularity scores in the $0.5-0.6$ range, recycling of cartons results in no net-environmental benefits (the
 more recycled material us used, the worse for LCA results) |

3

Sensitivity Analysis

HOW REFILL RATES AFFECT CARBON FOOTPRINT FOR RETURNABLE GLASS

Global Warming Potential excl. biogenic C [kg CO2 eq.] per litre of fill volume cradle-to-grave inlc. transports. BR, ReCiPe 2016

Transport to fillingSecondary packaging

End of life

Distribution

Manufacturing

Total

Bottle washing

Sphera Source: Ball based on Sphera LCA, 2020. Methology BR - ReCiPe (per litre equivalent)

Plans to further improve the beverage can

[^0]
FURTHER OPPORTUNITIES TO DECREASE CARBON FOOTPRINT OF VIRGIN ALUMINIUM

Emissions per ton of aluminum produced per production step - Ton CO_{2} / Ton aluminum

In scope of roadmap

100\% COLLEGTION

100\% RECYCLED CONTENT BACK INTO SAME VALUE PRODUCTS

- Weight
- Breaks
- Minimum collection rate
- Color
- Breaks
- Fine particles
- Cap, silicone valve, glue, label
- Opaque / TiO_{2}
- High Yield loss
- Degradation
- High cost
- Low value
- Nurdles / pellet
- Minimum rPET content
- EFSA
- Contamination to - Lack of Infrastructure - Cap, straw, paper and cardboard
- Low value
- Multi-material
- High yield loss
- PolyAI
- Fibre shortening
- Non aluminium labels and ends


```
RECYCLING RATES IN BRAZIL SINCE 1991. TODAY 97% OF THE 29 BILLION CANS PRODUCED ARE RECYCLED
```


Aluminum Cans Recycling in Brazil

- Brazil has over 800.000 people workers in recycling cooperatives or individually*
- In Brazil can recycling generate almost twice more income per ton than PET and 46x more income than glass**.
- This makes aluminum the most valuable scrap in the recycling business, a key element in any truly circular Economy system in developing countries
- Brazil current recycles 96.9% of all its cans in a 60-day cycle.

[^0]: Source: Ball's own calculation based on Instant LCA software using a 50/50 allocation rule and build on own as well as industry data/estimates

