

COMPARATIVE LIFE CYCLE ASSESSMENT: EUROPE
© BALL CORPORATION | 11802 RIDGE PKWY, STE. 200 | BROOMFIELD, COLORADO 80021 | 303-469-3131 | WWW. BALL.COM

About Life Cycle Assessment \qquad	() sphera Comparative LCA Study \qquad	Sensitivity Analysis	Plans to further improve the beverage can \qquad
Methodology	Carbon Footprint	Recycling Rates	Carbon footprint opportunities mapping
Limitations	Circularity Indicator	Recycled Content	Why recycling is the
Circular LCAs	All indicators Spider graphs		biggest opportunity
	Conclusions	Refillables	Why recycling yields matter

About Life

Cycle Assessment

LCA is a technique for assessing the environmental impacts associated with a product, by

- Compiling an inventory of relevant inputs and outputs of a product system,
- Evaluating the potential environmental impacts associated with those inputs and outputs,
- Interpreting the results of the inventory analysis and impact assessment phases in relation to the objectives of the study.

PURPOSE

- Identify environmental hotspots along a product's life cycle.
- Add an environmental dimension for decisionmakers to explore new design solutions.
- Monitor environmental footprint improvements of a product over time.
- Inform internal decision makers.
- Compare existing products with alternatives.
- Inform and educate external stakeholders, incl. legislators.
- Support product claims.

LIMITATIONS

- Not an exact science (methodologies, models and assumptions shape results).
- For the same product, different LCAs can suggest opposing findings.
- Not the single answer to all environmental questions.
- Circularity, real recycling rates, recycling yields, economics of recycling, and impacts of e.g. microplastics on the environment and human life are not considered in LCAs.
- Describe one specific situation, cannot be generalised for all.
> A high level of transparency and offering various sensitivity analysis and scenarios in a LCA is important to allow readers to understand the study design, interpret results and draw their own conclusions
- LCAs today are mostly linear instead of applying circular thinking, which would be more appropriate for fast moving consumer goods such as beverage packaging.
- That is why Ball is sponsoring a multi-year PhD program at the University of Barcelona to research limitations of packaging LCAs and develop new and scientifically sound approaches to overcome these limitations.
- Ball will build on these findings and initiate discussions with stakeholders to ensure future LCAs adequately capture the true sustainability performance of beverage packaging.

2

Sphera Comparative

() sphera

 LCA Study

Critical Peer Review Panel

Prof. Dr. Pere Fullana i Palmer

Director of the UNESCO Chair in Life Cycle and Climate Change

Dr. Ivo Mersiowsky

Sustainability and leadership consultant, LCA expert (focus chemical and plastics industry)

Angela Schindler

Environmental management consultant, LCA expert (focus modelling, packaging), reviewer for the International Journal of Life Cycle Assessment

GLOBAL WARMING POTENTIAL (CARBON FOOTPRINT)PER LITRE

Carbon footprint comparison per litre

SUMMARY OF SEVERAL ENVIRONMENTAL IMPACT CATEGORIES, BIGGER FORMAT CONTAINERS

EF 3.0 Water scarcity [m ${ }^{3}$ world equiv.]
0

PET 50cl

(CARBONATED)

PET 50cl

(N ON-CARBONATED)

25cl \& 33cl aluminium can

25cl \& 1L glass bottle

50 cl aluminium can

33cl beverage carton

All PET bottles

50cl beverage carton

Note: MCI methodology includes non-recycled renewables fibres as circular. Other methodologies do not.

- Good performance on Global Warming Potential (GWP), benefiting from lightweight, high recycling rates and good recycled content
- Biggest opportunity to decrease further GWP by increasing recycling rates and recycled content, reaching the same values of cartons and non-carbonated water PET bottles (recycling cartons adds GWP impact)
- Best material circularity score (~0.7) of all single-use packaging options
- Low weight non-carbonated water PET bottles come with the lowest overall carbon footprint, benefiting from the low weight compared to heavier PET bottles for carbonated drinks and other bottles such as tea, juice or premium water
- Carbonated PET bottles and cans come with very similar carbon footprints - on other environmental impact categories, sometimes cans come with lower impacts (e.g. resource use), and sometimes PET (e.g. acidification)
- Low real recycling rates (42\%) and recycled content (0% as per PEF) as well as high recycling yield losses result in worst material circularity scores of all substrates for PET (<0.3)

- Highest environmental impacts for single-use glass in several categories, driven by heavy weight, and very resource and energy intensive glass production
- Bad scores on acidification
- Average material circularity scores for single-use bottles (~ 0.45)
- Good results for several impact categories driven by biogenic carbon accounting rules and relatively small manufacturing impacts and the fact that integrated pulp and paper mills generate most of their energy from biomass intake such as wood offcuts
- Material circularity scores in the 0.5-0.6 range, benefiting from the MCI methodology which assumes all sustainably sourced fibers are restorative and circular by nature (despite recycling challenges of fiber, plastic and aluminum layers)

PRODUCT SPECIFICATIONS \& M AIN DATASETSUSED. ALL CONTAINERS ARE REAL, POPULAR BEVERAGES

	Alu 50cl	Alu 33cl	Alu 25cl		PET 50cl (carbonated)	(carbonated)		Glass 1L	Glass 25cl	Carton 50cl	Carton 33cl
Purchased in	DE	DE	UK	UK	DE	UK	UK	UK	DE	DE	UK
Total Container Weight (g)	14.5	11.9	10.3	$\begin{gathered} 14.9 \\ \begin{array}{c} \text { (bottle, cap, } \\ \text { label) } \end{array} \end{gathered}$	$\begin{gathered} 22.5 \\ \begin{array}{c} \text { (bottle, cap, } \\ \text { label) } \end{array} \end{gathered}$	$\begin{gathered} 27.2 \\ \begin{array}{c} \text { (bottle, cap, } \\ \text { label) } \end{array} \end{gathered}$	$\begin{gathered} 20.9 \\ \begin{array}{c} \text { (bottle, cap, } \\ \text { label) } \end{array} \end{gathered}$	$\begin{gathered} 521 \\ \begin{array}{c} \text { (bottle, cap, } \\ \text { label) } \end{array} \end{gathered}$	$\begin{gathered} 172 \\ \text { (bottle, cap) } \end{gathered}$	23.0	17.0
Secondary Packaging	12 pack, corrug. board, LDPE (60g)	4 pack, corrug. board, LDPE (51g)	4 pack, corrug. board, (28.5g)	12 pack, LDPE (16g)	12 pack, LDPE (16g)	6 pack, LDPE (8g)	Individual bottle	6 pack, HDPE crate (1042g)	4 pack, corrug. Board (44g)	8 pack, corrug. board (126g)	4 pack, corrug. board (20g)
Recycled Content*	55\% can body, 3\% can end			0\%				40\%		0\%	
Recycling rate*	69\% (real recycling)			42\% (real recycling)				66\% (real recycling)		43%(collection rate!)	
Allocation factor*	0.2			0.5				0.2		0.2	
Main Datasets	Primary \& secondary aluminum, sheet rolling: EA 2015			PET granulate, blow moulding: GaBi 2016				Virgin \& recycled glass: GaBi 2016		Liquid packaging board: ACE 2014	

*all values as per PEF Guidelines, Annex C. Official collection for recycling rates are revised to real recycling rates as per information from each association except for cartons who do not publish it.

3

Sensitivity Analysis

EFFECT OF RECYCLING RATE ON CARBON FOOTPRINT

EFFECT OF LIGHTWEIGHTING TRENDS FOR 50CL PET AND CANS ON CARBON FOOTPRINT


```
EFFECT OF REFILL CYCLES OF REFILLABLES GLASS BOTTLES ON CARBON FOOTPRINT
```

Climate change
(\% co2 eq.)
per liter of fill volume
900%

800%
700%
300%

Plans to further improve the
beverage can

100\% COLLECTION

100\% RECYCLED CONTENT BACK INTO SAME VALUE PRODUCTS

CURRENT RECYCLING RATESIN EUROPE

74.5\%

The overall recycling rate for aluminium beverage cans in the European Union, Switzerland, Norway and Iceland increased to a new record level of 74.5\% in 2017.

ISSUES ACROSS ALL RECYCLING VALUE CHAIN FOR VARIOUS BEVERAGE CONTAINERS

- Weight - Colour
- Breaks
- Breaks
- Fine • Low value particles
- Black plastics collection . Coloured PET rate
- Export market
- Cap, silicone valve, glue, label
- Opaque $/ \mathrm{TiO}_{2}$ - Nurdles
- High yield losses . Minimum
- Degradation
rPET
- High cost content
- EFSA guidelines
- Contamination to paper and cardboard
- Low value
- Lack of infrastructure都
- Cap, straw, straw packaging
- Multi-material
- High yield losses
- End
- PolyAl
- Fibre shortening
- Non-aluminium labels, ends, widgets

FURTHER OPPORTUNITIES TO DECREASE CARBON FOOTPRINT OF VIRGIN ALUMINIUM

Emissions per ton of aluminium produced per production step - $\mathrm{Ton} \mathrm{CO}_{2}$ / Ton aluminium
\square In scope of roadmap

[^0]Tonne of CO_{2}-eq / tonne of production

[^0]: Source: Material Economic analysis via data from International Aluminium Institute, 2019 (http://wwwworld-aluminium.org/statistics) |

